Standard ICs

Dual monostable multivibrator BU4528B / BU4528BF

The BU4528B and BU4528BF are monostable multivibrators with trigger and reset functions that can be activated. Each chip has two built-in circuits.
Triggers can initiate both rising and falling in response to Input A and Input B. As the output monostable pulse width is determined by the time constant of the external resistance (Rx) and the capacitor (Cx), a wide range of output pulse widths can be set.
Setting the RESET input to "L" enables external asynchronous resetting and this RESET input can be utilized to reduce the time from the trigger disable input or the power on until the BU4528B and BU4528BF are ready for monostable operation.

- Features

1) Low power dissipation.
2) High fan-out.
3) Wide range of operating power supply voltages.
4) Direct drive of 2 L-TTL inputs and 1 LS-TTL input.
5) High input impedance.

- Block diagram

- Truth table

INPUT			OUTPUT	
RESET	A	B	Q	\bar{Q}
H	*	H	\square	\square
H	L	\downarrow	\square	\square
H	$\uparrow \downarrow$	L	Not Tris	gered
H	H	$\uparrow \downarrow$	Not Tris	gered
H	L, H, \quad,	H	Not Trig	gered
H	L	$\mathrm{L}, \mathrm{H}, \uparrow$	Not Tris	gered
L	X	X	L	H
\uparrow	X	X	Not Tris	gered

- Logic circuit diagram

- Absolute maximum ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Limits	Unit
Power supply voltage	VDD	$-0.3 \sim+18$	V
Power dissipation	Pd	1000 (DIP), $500(\mathrm{SOP})$	mW
Operating temperature	Topr	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Input voltage	VIN	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V

- Electrical characteristics

DC characteristics (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V} s \mathrm{~s}=0 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Vdo (V)	Conditions
Input high level voltage	VIH	3.5	-	-	V	5	-
		7.0	-	-		10	
		11.0	-	-		15	
Input low level voltage	VIL	-	-	1.5	V	5	-
		-	-	3.0		10	
		-	-	4.0		15	
Input high level current	Ін	-	-	0.3	$\mu \mathrm{A}$	15	$\mathrm{V}_{\mathrm{I}}=15 \mathrm{~V}$
Input low level current	IIL	-	-	-0.3	$\mu \mathrm{A}$	15	V IL $=0 \mathrm{~V}$
Output high level voltage	Vон	4.95	-	-	V	5	$\mathrm{lo}=0 \mathrm{~mA}$
		9.95	-	-		10	
		14.95	-	-		15	
Output low level voltage	VoL	-	-	0.05	V	5	$\mathrm{l}=0 \mathrm{~mA}$
		-	-	0.05		10	
		-	-	0.05		15	
Output high level current	Іон	-0.16	-	-	mA	5	VOH $=4.6 \mathrm{~V}$
		-0.4	-	-		10	Vон $=9.5 \mathrm{~V}$
		-1.2	-	-		15	Vон $=13.5 \mathrm{~V}$
Output low level current	loL	0.44	-	-	mA	5	$\mathrm{VoL}=0.4 \mathrm{~V}$
		1.1	-	-		10	$\mathrm{VoL}=0.5 \mathrm{~V}$
		3.0	-	-		15	$\mathrm{VoL}=1.5 \mathrm{~V}$
Static current dissipation	Ido	-	-	20	$\mu \mathrm{A}$	5	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or GND
		-	-	40		10	
		-	-	80		15	

Switching characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{CL}=50 \mathrm{pF}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Unit	VDD (V)	Conditions
Output rise time	tтıH	-	100	-	ns	5	-
		-	50	-	ns	10	
		-	40	-	ns	15	
Output fall time	tthL	-	100	-	ns	5	-
		-	50	-	ns	10	
		-	40	-	ns	15	
Propagation delay time, A or B to Q or $\overline{\mathrm{Q}}$	$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	-	325	-	ns	5	$C x=15 p F, R x=5 k \Omega$
		-	120	-	ns	10	
		-	90	-	ns	15	
Propagation delay time, A or B to Q or \bar{Q}	$\begin{aligned} & \text { tPL } \\ & \text { tpHL } \end{aligned}$	-	705	-	ns	5	$C x=1000 \mathrm{pF}, \mathrm{Rx}=10 \mathrm{k} \Omega$
		-	290	-	ns	10	
		-	210	-	ns	15	
Propagation delay, Reset to Q or $\overline{\mathrm{Q}}$	tpLH tphL	-	325	-	ns	5	$C x=15 p F, R x=5 k \Omega$
		-	90	-	ns	10	
		-	60	-	ns	15	
		-	1000	-	ns	5	$C \mathrm{x}=1000 \mathrm{pF}, \mathrm{Rx}=10 \mathrm{k} \Omega$
		-	300	-	ns	10	
		-	250	-	ns	15	
Minimum input pulse width	twin	-	70	-	ns	5	$\begin{array}{ll} C x=1000 \mathrm{pF}, & \mathrm{Rx}=10 \mathrm{k} \Omega \\ \mathrm{Cx}=15 \mathrm{pF}, & \mathrm{Rx}=5 \mathrm{k} \Omega \end{array}$
		-	30	-	ns	10	
		-	30	-	ns	15	
Output pulse width	twout1	-	550	-	ns	5	$C x=15 p F, R x=5 k \Omega$
		-	350	-	ns	10	
		-	300	-	ns	15	
Output pulse width	twout2	25	40	55	$\mu \mathrm{s}$	5	$C \mathrm{x}=1000 \mathrm{pF}, \mathrm{Rx}=10 \mathrm{k} \Omega$
		10	50	90	$\mu \mathrm{s}$	10	
		15	55	95	$\mu \mathrm{s}$	15	
Minimum trigger time	tr	-	0	-	ns	5	$\begin{array}{ll} C x=1000 \mathrm{pF}, & \mathrm{Rx}=10 \mathrm{k} \Omega \\ \mathrm{Cx}=15 \mathrm{pF}, & \mathrm{Rx}=5 \mathrm{k} \Omega \end{array}$
		-	0	-	ns	10	
		-	0	-	ns	15	
Input capacitance	CIN	-	5	-	pF	-	-

- Measurement circuits

Fig. 1 Switching time measurement circuit

Fig. 2 Switching time waveform

- Timing chart

$\begin{array}{ll}\text { © : TRIGGER } & \mathrm{tN}:(\mathrm{Cx}>0.01 \mu \mathrm{~F}) \mathrm{ts} \fallingdotseq\left[0.2+0.1 \frac{(\mathrm{VDD}-\mathrm{Vss})}{5}\right] \cdot \mathrm{RxCx} \\ \Delta: \text { RESET } & \mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3: \mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3<\mathrm{tN}\end{array}$
今 : RETRIGGER
Fig. 3
- Electrical characteristic curve

Fig. 4 Power dissipation vs. Ta

- External dimensions (Units: mm)

BU4528B

DIP16

BU4528BF

0.15

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material. Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

