

Functional Description

The ACTQ843 consists of nine D-type latches with 3STATE outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation, as the output transition follows the data in transition. On the LE HIGH-to-LOW transition, the data that meets the setup times is latched. Data appears on the bus when the Output Enable ($\overline{\mathrm{OE})}$) is LOW. When $\overline{\mathrm{OE}}$ is HIGH, the bus output is in the high impedance state. In addition to the LE and OE pins, the ACTQ843 has a Clear ($\overline{\mathrm{CLR}})$ pin and a Preset ($\overline{\mathrm{PRE}})$ pin. These pins are ideal for parity bus interfacing in high performance systems. When $\overline{C L R}$ is LOW, the outputs are LOW if $\overline{O E}$ is LOW. When $\overline{\mathrm{CLR}}$ is HIGH, data can be entered into the latch. When $\overline{\text { PRE }}$ is LOW, the outputs are HIGH if $\overline{\mathrm{OE}}$ is LOW. Preset overrides CLR.

Function Table

Inputs					Internal	Outputs	Function
$\mathbf{C L R}$	$\overline{\text { PRE }}$	$\overline{\text { OE }}$	LE	D	Q	O	
H	H	H	H	L	L	Z	High Z
H	H	H	H	H	H	Z	High Z
H	H	H	L	X	NC	Z	Latched
H	H	L	H	L	L	L	Transparent
H	H	L	H	H	H	H	Transparent
H	H	L	L	X	NC	NC	Latched
H	L	L	X	X	H	H	Preset
L	H	L	X	X	L	L	Clear
L	L	L	X	X	H	H	Preset
L	H	H	L	X	L	Z	Clear/High Z
H	L	H	L	X	H	Z	Preset/High Z

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$Z=$ High Impedance
NC = No Change

Logic Diagram

Absolute Maximum Ratings（Note 1）		Recommended Operating Conditions
Supply Voltage（ V_{CC} ）	-0.5 V to +7.0 V	
DC Input Diode Current（ $1_{1 \mathrm{~K}}$ ）		Supply Voltage（ V_{CC} ）${ }^{\text {c }}$
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	－20 mA	Input Voltage（ V_{1} ） $\mathrm{Cl}^{(1)}$
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	＋20 mA	Output Voltage（ V_{0} ） 0 V to V_{CC}
DC Input Voltage（ V_{1} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	Operating Temperature（ T_{A} ）$\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DC Output Diode Current（1 ок）		Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$（ $125 \mathrm{mV} / \mathrm{ns}$
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	－20 mA	$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$	＋20 mA	$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
DC Output Voltage（ V_{O} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	
DC Output Source or Sink Current（I I_{O} ）	$\pm 50 \mathrm{~mA}$	
DC $V_{\text {CC }}$ or Ground Current per Output Pin（ICC or $\mathrm{I}_{\mathrm{GND}}$ ）	$\pm 50 \mathrm{~mA}$	Note 1：Absolute maximum ratings are those values beyond which damage
Storage Temperature（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	to the device may occur．The databook specifications should be met，with－ out exception，to ensure that the system design is reliable over its power
DC Latch－Up Source or Sink Current	$\pm 300 \mathrm{~mA}$	supply，temperature，and output／input loading variables．Fairchild does not recommend operation of $F A C T^{T M}$ circuits outside databook specifications．
Junction Temperature（ T_{J} ）		
PDIP	$140^{\circ} \mathrm{C}$	

DC Electrical Characteristics

Symbol	Parameter	V_{cc} （V）	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \hline \end{aligned}$
$\overline{\mathrm{V}} \mathrm{IL}$	Maximum LOW Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OL}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	lout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{LL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
$\overline{I_{\mathrm{N}}}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \\ & \text { GND } \end{aligned}$
$\overline{\mathrm{I}} \mathrm{O}$	Maximum 3－STATE Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
$I_{\text {CCT }}$	Maximum ICC／Input	5.5	0.6		1.5	mA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$
IOLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$	Output Current（Note 3）	5.5			－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$I_{\text {cc }}$	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$
$\overline{\mathrm{V}_{\text {OLP }}}$	Quiet Output Maximum Dynamic V_{OL}	5.0	1.1	1.5		V	Figures 1， 2 （Note 4）（Note 5）
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	－0．6	－1．2		V	Figures 1， 2 （Note 4）（Note 5）
$\overline{\mathrm{V}} \mathrm{IHD}$	Minimum HIGH Level Dynamic Input Voltage	5.0	1.9	2.0		V	（Note 4）（Note 6）

DC Electrical Characteristics (Continued)

Symbol	Parameter		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
		(V)	Typ	Guaranteed Limits			
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	1.2	0.8		V	(Note 4)(Note 6)

Note 2: All outputs loaded; thresholds on input associated with output under test.
Note 3: Maximum test duration 2.0 ms , one output loaded at a time.
Note 4: DIP package.
Note 5: Max number of outputs defined as (n). Data inputs are driven 0 V to 3 V . One output @ GND
Note 6: Max number of data inputs (n) switching. ($n-1$) inputs switching $0 V$ to $3 V$. Input-under-test switching
3 V to threshold ($\mathrm{V}_{\text {ILD }}$), 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right), \mathrm{f}=1 \mathrm{MHz}$.

AC Electrical Characteristics

Symbol	Parameter	V_{CC} (V) (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay $D_{n} \text { to } O_{n}$	5.0	2.5	6.2	9.5	2.0	10.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $D_{n} \text { to } O_{n}$	5.0	2.5	6.7	9.5	2.0	10.0	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay LE to O_{n}	5.0	2.5	7.1	9.0	2.0	10.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay LE to O_{n}	5.0	2.5	6.9	9.0	2.0	10.0	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{\text { PRE }}$ to O_{n}	5.0	2.5	7.3	10.0	2.0	11.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{CLR}}$ to O_{n}	5.0	2.5	7.2	11.0	2.0	12.0	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time $\overline{\mathrm{OE}}$ to O_{n}	5.0	2.5	7.2	9.5	2.0	10.5	ns
$t_{\text {PZL }}$	Output Enable Time $\overline{\mathrm{OE}}$ to O_{n}	5.0	2.5	7.5	9.5	2.0	10.5	ns
$t_{\text {PHZ }}$	Output Disable Time $\overline{O E}$ to O_{n}	5.0	1.5	5.0	8.0	1.0	8.5	ns
$t_{\text {PLZ }}$	Output Disable Time $\overline{\mathrm{OE}}$ to O_{n}	5.0	1.5	5.1	8.0	1.0	8.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\text { PRE }}$ to O_{n}	5.0	2.5	6.7	10.0	2.0	11.0	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{CLR}}$ to O_{n}	5.0	2.5	7.3	11.0	2.0	12.0	ns
tosLh toshl	Output to Output Skew (Note 8) $D_{n} \text { to } O_{n}$	5.0		0.5	1.5		1.5	ns

Note 7: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$). Parameter guaranteed by design. Not tested.

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.
Equipment:
Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure:

1. Verify Test Fixture Loading: Standard Load 50 pF , 500Ω.
2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
4. Set the HFS generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and effect the results of the measurement
5. Set the HFS generator input levels at OV LOW and 3V HIGH for ACT devices and OV LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

FIGURE 1. Quiet Output Noise Voltage Waveforms
Note 10: $\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\mathrm{OLP}}$ are measured with respect to ground reference
Note 11: Input pulses have the following characteristics: $f=1 \mathrm{MHz}$, $\mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, skew <150 ps.
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable. Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$\mathrm{V}_{\text {ILD }}$ and $\mathrm{V}_{\text {IHD }}$:
- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed $\mathrm{V}_{I H}$ limits. The input LOW voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {ILD }}$
- Next decrease the input HIGH voltage level on the, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\mathrm{IHD}}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

FIGURE 2. Simultaneous Switching Test Circuit
Physical Dimensions inches（millimeters）unless otherwise noted
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

N24C (REV F)
24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N24C
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
