

Absolute Maximum Ratings(Note 1) (Note 2)			Recommended Operating Conditions (Note 2)							
DC S Input Storag Ran Powe Dua Sm Lead (So DC	pply Voltage (V_{DD}) oltage ($\mathrm{V}_{\text {IN }}$) e Temperature ge (T_{S}) Dissipation (P_{D}) -In-Line Il Outline emperature (T_{L}) dering, 10 seconds) lectrical Cha	$\begin{array}{r} -0.5 \text { to }+18 \mathrm{~V}_{\mathrm{DC}} \\ -0.5 \text { to } \mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V} \mathrm{DC} \\ -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ 700 \mathrm{~mW} \\ 500 \mathrm{~mW} \\ 260^{\circ} \mathrm{C} \\ \text { teristics (Note 2) } \end{array}$	Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation. Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.							
Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
$\mathrm{IDD}^{\text {d }}$	Quiescent Device Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{S S} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \end{aligned}$		$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$		$\begin{aligned} & \hline 0.02 \\ & 0.02 \\ & 0.02 \end{aligned}$	$\begin{gathered} \hline 5.0 \\ 10 \\ 20 \end{gathered}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}} \leq 1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0.05 \\ 0.05 \\ 0.05 \\ \hline \end{array}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
$\overline{\mathrm{V}_{\mathrm{OH}}}$	HIGH Level Output Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}} \leq 1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{array}{\|c} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		V
$\overline{\mathrm{V}} \mathrm{IL}$	LOW Level Input Voltage	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{gathered} \hline 2.25 \\ 4.5 \\ 6.75 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	V
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{gathered} \hline 2.75 \\ 5.5 \\ 8.25 \\ \hline \end{gathered}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		V
$\stackrel{\text { IoL }}{ }$	LOW Level Output Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$		$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$		mA
$\overline{\mathrm{IOH}}$	HIGH Level Output Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline-0.64 \\ & -1.6 \\ & -4.2 \end{aligned}$		$\begin{aligned} & \hline-0.51 \\ & -1.3 \\ & -3.4 \end{aligned}$	$\begin{aligned} & -0.88 \\ & -2.25 \\ & -8.8 \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline-0.36 \\ -0.9 \\ -2.4 \\ \hline \end{array}$		mA
$\overline{\mathrm{IN}}$	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		-10^{-5} 10^{-5}	$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} -1.0 \\ 1.0 \end{array}$	$\mu \mathrm{A}$
Note 3: $\mathrm{I}_{\text {OH }}$ and I_{LL} are tested one output at a time.										

AC Electrical Characteristics (Note 4) $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise noted						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay Data to Output	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 200 \\ 75 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 400 \\ & 150 \\ & 100 \\ & \hline \end{aligned}$	ns
$\overline{\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}}$	Propagation Delay Enable to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 200 \\ 80 \\ 60 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 400 \\ & 160 \\ & 120 \\ & \hline \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay Clear to Output	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 175 \\ 80 \\ 65 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 350 \\ & 160 \\ & 130 \\ & \hline \end{aligned}$	ns
${ }_{\text {t }}^{\text {LLH }}$, $\mathrm{t}_{\text {THL }}$	Propagation Delay Address to Output	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 225 \\ 100 \\ 75 \end{gathered}$	$\begin{aligned} & \hline 450 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	ns
$\overline{\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TLH }}}$	Transition Time (Any Output)	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
$\overline{T_{W H},} \mathrm{~T}_{\mathrm{WL}}$	Minimum Data Pulse Width	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 100 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 200 \\ & 100 \\ & 80 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\mathrm{WH}}, \mathrm{t}_{\text {WL }}$	Minimum Address Pulse Width	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 200 \\ 100 \\ 65 \end{gathered}$	$\begin{aligned} & \hline 400 \\ & 200 \\ & 125 \\ & \hline \end{aligned}$	ns
${ }_{\text {twh }}$	Minimum Clear Pulse Width	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 75 \\ & 40 \\ & 25 \end{aligned}$	$\begin{gathered} 150 \\ 75 \\ 50 \\ \hline \end{gathered}$	ns
t_{SU}	Minimum Set-Up Time Data to E	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 40 \\ & 20 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & 30 \\ & \hline \end{aligned}$	ns
${ }_{\text {th }}$	Minimum Hold Time Data to E	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 60 \\ & 30 \\ & 25 \\ & \hline \end{aligned}$	$\begin{gathered} 120 \\ 60 \\ 50 \\ \hline \end{gathered}$	ns
$\mathrm{t}_{\text {Su }}$	Minimum Set-Up Time Address to E	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline-15 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 50 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	ns
t_{H}	Minimum Hold Time Address to E	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & -50 \\ & -20 \\ & -15 \end{aligned}$	$\begin{gathered} \hline 15 \\ 10 \\ 5 \\ \hline \end{gathered}$	ns
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	Per Package (Note 5)		100		pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input		5.0	7.5	pF
Note 4: AC Parameters are guaranteed by DC correlated testing. Note 5: Dynamic power dissipation (P_{D}) is given by: $P_{D}=\left(C_{P D}+C_{L}\right) V_{C C}{ }^{2} f+P_{Q}$; where $C_{L}=$ load capacitance; $f=$ frequency of operation; for further details, see application note AN-90, "54C/74C Family Characteristics".						

CD4099BC 8-Bit Addressable Latch

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
