

Connection Diagram

Pin Descriptions

Pin Names	Description
$\overline{O E}_{n}$	Output Enable Input (Active LOW)
LE $_{n}$	Latch Enable Input
$I_{0}-I_{15}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{15}$	3-STATE Outputs

Truth Tables

Inputs			Outputs
LE_{1}	$\overline{\mathrm{OE}}_{1}$	$\mathrm{I}_{0}-\mathrm{I}_{7}$	$\mathrm{O}_{0}-\mathrm{O}_{7}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O
Inputs			Outputs
LE_{2}	$\overline{\mathrm{OE}}_{2}$	$I_{8}-l_{15}$	$\mathrm{O}_{8}-\mathrm{O}_{15}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O
```H = HIGH Voltage Level L = LOW Voltage Level \(\mathrm{X}=\) Immaterial \(\mathrm{Z}=\mathrm{HIGH}\) Impedance \(\mathrm{O}_{0}=\) Previous output prior to HIGH-to-LOW transition of LE```			

## Functional Description

The LVTH162373 contains sixteen D-type latches with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable ( $L E_{n}$ ) input is HIGH, data on the $D_{n}$ enters the latches. In this condition the latches are transparent, i.e, a latch output will change states each time its D input changes. When $L E_{n}$ is LOW, the latches store information that was present on the $D$ inputs a setup time preceding the HIGH-to-LOW transition of LE $n$. The 3-STATE standard outputs are controlled by the Output Enable $\left(\overline{\mathrm{OE}}_{n}\right)$ input. When $\overline{\mathrm{OE}}_{n}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH , the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

## Logic Diagrams




Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.




Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
