
© 2001 Fairchild Semiconductor Corporation

technology to achieve high speed operation while maintain- ing low CMOS power dissipation.			■ ESD performance: Human body model > 2000V Machine model > 200V Note 1: To ensure the high-impedance state during power up or power down, OE should be tied to V _{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.				
Ordering Co							
Order Number	Package Number		Package	Descriptions			
74ALVC162240T	MTD48	48-Lead Thin Shrink S	Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide				
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Logic Symbol Pin Descriptions							
	<u> </u>	41 42 43 44 45	Pin Names	Description			
	4 3 6 7 5 5 10		OEn	Output Enable Input (Active LOW)			
			I ₀ –I ₁₅	Inputs			
00 01 02 03	0 ₄ 0 ₅ 0 ₆ 0 ₇ 0 ₈ 0 ₉ 0 ₁₀ Q Q Q Q Q Q Q Q		$\overline{O}_0 - \overline{O}_{15}$	Outputs			

DS500699

74ALVC162240

FAIRCHILD

SEMICONDUCTOR

Low Voltage 16-Bit Inverting Buffer/Line Driver with 3.6V Tolerant Inputs and Outputs and 26 Ω Series Resistors in Outputs

General Description

The ALVC162240 contains sixteen inverting buffers with 3-STATE outputs to be employed as a memory and address driver, clock driver, or bus oriented transmitter/ receiver. The device is nibble (4-bit) controlled. Each nibble has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.

The 74ALVC162240 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O capability up to 3.6V. The 74ALVC162240 is also designed with 26Ω series resistors in the outputs. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

The 74ALVC162240 is fabricated with an advanced CMOS

Features

- \blacksquare 1.65V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- 26Ω series resistors in outputs
- t_{PD}
 - 3.8 ns max for 3.0V to 3.6V V_{CC}
 - 4.3 ns max for 2.3V to 2.7V V_{CC} 7.6 ns max for 1.65V to 1.95V V_{CC}
- Power-off high impedance inputs and outputs

November 2001

Revised November 2001

- Supports live insertion and withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78

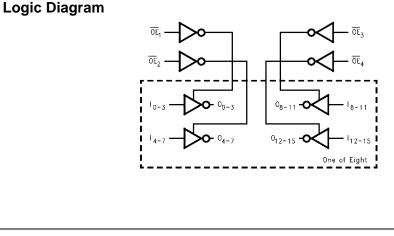
Connection Diagram

		<u>, , , , , , , , , , , , , , , , , , , </u>		
ŌĒ1 —	1	\bigcirc	48	- OE ₂
ō, —	2		47	— 1 ₀
ō, —	3		46	— 4
GND -	4		45	- GND
ō ₂ —	5		44	- I ₂
ō_3 —	6		43	- I ₃
v _{cc} —	7		42	-v _{cc}
ō4 —	8		41	- 1 ₄
ō ₅ —	9		40	— I ₅
GND —	10		39	— GND
ō ₆ —	11		38	— I ₆
ō ₇ —	12		37	- I ₇
ō ₈ —	13		36	— I ₈
ō ₉ —	14		35	— I ₉
GND —	15		34	— GND
ō ₁₀ —	16		33	— 4 o
ō ₁₁ —	17		32	— h 1
v _{cc} —	18		31	- v _{cc}
ō ₁₂ —	19		30	— I ₁₂
ō ₁₃ —	20		29	— I _{1 3}
GND —	21		28	— GND
ō ₁₄ —	22		27	— I _{1 4}
0 ₁₅ —	23		26	— I ₁₅
OE4 -	24		25	- OE3
				l

Truth Tables Inputs Outputs $\overline{O}_0 - \overline{O}_3$ OE₁ I₀–I₃ L L н L н L Ζ н Х Inputs Outputs OE₂ $\overline{O}_4 - \overline{O}_7$ I₄–I₇ L L Н L н L н Х z Outputs Inputs 0₈-0₁₁ OE₃ I₈–I₁₁ L L н L L н н Х Ζ Inputs Outputs $\overline{O}_{12} - \overline{O}_{15}$ OE₄ I₁₂–I₁₅ L L н L н L

н H = HIGH Voltage Leve

L = LOW Voltage Level X = Immaterial (HIGH or LOW, inputs may not float) Z = High Impedance


Functional Description

The 74ALVC162240 contains sixteen inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of each other. The control pins may be shorted together to obtain full 16-bit operation. The 3-STATE outputs are con-

trolled by an Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW, the outputs are in the 2-state mode. When $\overline{\text{OE}}_n$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the inputs.

Х

Ζ

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (V _I)	-0.5V to 4.6V
Output Voltage (V _O) (Note 3)	-0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
$V_{O} < 0V$	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 4) Power Supply 0 Operating 1.65V to 3.6V Input Voltage 0V to V_{CC} Output Voltage (V_O) 0V to V_{CC} Free Air Operating Temperature (T_A) -40°C to +85°C Minimum Input Edge Rate ($\Delta t/\Delta V$) V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V 10 ns/V

74ALVC162240

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Floating or unused control inputs must be held HIGH or LOW.

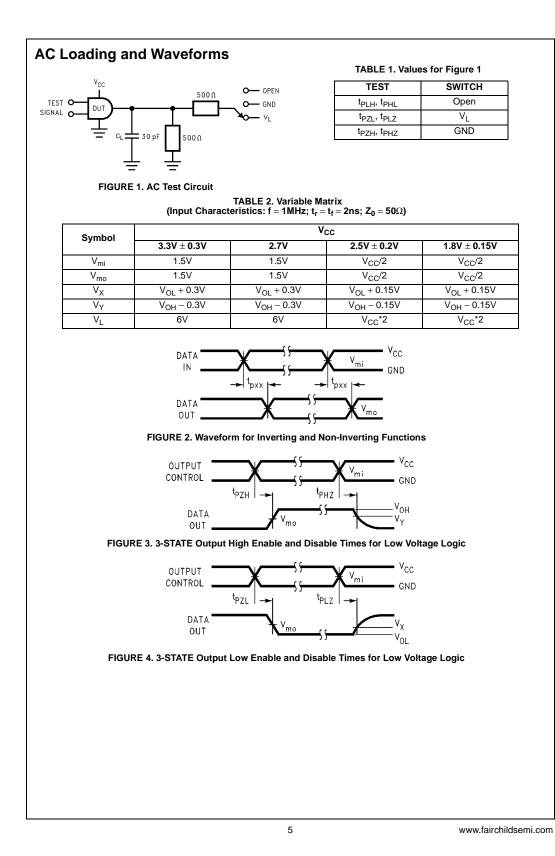
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units	
V _{IH}	HIGH Level Input Voltage		1.65 - 1.95	0.65 x V _{CC}			
			2.3 - 2.7	1.7		V	
			2.7 - 3.6	2.0			
V _{IL}	LOW Level Input Voltage		1.65 - 1.95		0.35 x V _{CC}		
			2.3 - 2.7		0.7	V	
			2.7 - 3.6		0.8		
V _{ОН}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2			
		$I_{OH} = -2 \text{ mA}$	1.65	1.2			
		$I_{OH} = -4 \text{ mA}$	2.3	1.9			
		$I_{OH} = -6 \text{ mA}$	2.3	1.7		V	
			3	2.4			
		$I_{OH} = -8 \text{ mA}$	2.7	2			
		$I_{OH} = -12 \text{ mA}$	3.0	2			
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2		
		$I_{OL} = 2 \text{ mA}$	1.65		0.45		
		$I_{OL} = 4 \text{ mA}$	2.3		0.4		
		$I_{OL} = 6 \text{ mA}$	2.3		0.55	V	
			3		0.55		
		I _{OL} = 8 mA	2.7		0.6		
		I _{OL} = 12 mA	3		0.8		
I _I	Input Leakage Current	$0 \le V_1 \le 3.6V$	3.6		±5.0	μA	
l _{oz}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μA	
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA	
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μΑ	

3

DC Electrical Characteristics

www.fairchildsemi.com

74ALVC162240


AC Electrical Characteristics


Symbol	Parameter		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$							
			C _L = 50 pF			C _L = 30 pF				Units
		V _{CC} = 3.	$V_{CC}=3.3V\pm0.3V$		$V_{CC} = 2.7V$		$\textbf{V}_{\textbf{CC}} = \textbf{2.5V} \pm \textbf{0.2V}$		$V_{CC}=1.8V\pm0.15V$	
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PL}	Propagation Delay Bus to Bus	1.3	3.8	1.5	4.3	1.0	3.8	1.5	7.6	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.3	4.3	1.5	5.6	1.0	5.1	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.1	1.5	4.5	1.0	4.0	1.5	7.2	ns

Capacitance

Cumhal	Parameter		Conditions	T _A = -	Units	
Symbol	Parameter		Conditions	V _{cc}	Typical	Units
CIN	Input Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	6	pF
C _{OUT}	Output Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	20	pF
				2.5	20	рі

www.fairchildsemi.com

