

Truth Tables		
	Inputs	Outputs
OE_{1}	$\mathrm{I}_{0}-\mathrm{I}_{3}$	$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$
L	L	H
L	H	L
H	X	z
Inputs		Outputs
$\overline{\mathrm{OE}}_{2}$	$\mathrm{I}_{4}-\mathrm{I}_{7}$	$\overline{\mathrm{O}}_{4}-\overline{\mathrm{O}}_{7}$
L	L	H
L	H	L
H	X	Z
Inputs		Outputs
$\overline{\mathrm{OE}}_{3}$	$\mathrm{I}_{8}-\mathrm{I}_{11}$	$\overline{\mathrm{O}}_{8}-\overline{\mathrm{O}}_{11}$
L	L	H
L	H	L
H	X	z
Inputs		Outputs
OE_{4}	$\mathrm{l}_{12} \mathrm{l}_{15}$	$\overline{\mathrm{O}}_{12}-\overline{\mathrm{O}}_{15}$
L	L	H
L	H	L
H	X	z

$\mathrm{H}=$ High Voltage Level
L = Low Voltage Level
$\mathrm{X}=$ Immaterial
$Z=$ High Impedance

Functional Description

The ACTQ16240 contains sixteen inverting buffers with 3STATE standard outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independently of the other. The control pins may be shorted together to obtain full 16 -bit operation. The 3 -STATE outputs are controlled by an Output Enable ($\overline{\mathrm{OE}}_{\mathrm{n}}$) input for each nibble. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is LOW, the outputs are in 2-state mode. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH , the outputs are in the high impedance mode, but this does not interfere with entering new data into the inputs.

Logic Diagram

Absolute Maximum Ratings（Note 1）		Recommended Operating Conditions
Supply Voltage（ V_{CC} ）	-0.5 V to +7.0 V	
DC Input Diode Current（ $\mathrm{I}_{1 \mathrm{~K}}$ ）		Supply Voltage（V） V_{CC} ）4．5V to 5.5 V
$\mathrm{V}_{\mathrm{I}}=-0.5 \mathrm{~V}$	－20 mA	Input Voltage（ V_{l} ） $\mathrm{V}^{(1)}$ to V_{CC}
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	＋20 mA	Output Voltage（ V_{O} ） 0 V to V_{CC}
DC Output Diode Current（ $\mathrm{l}_{\text {OK }}$ ）		Operating Temperature（ T_{A} ）$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	－20 mA	Minimum Input Edge Rate（ $\Delta \mathrm{V} / \Delta \mathrm{t}$ ） $125 \mathrm{mV} / \mathrm{ns}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	＋20 mA	$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
DC Output Voltage（ V_{O} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
DC Output Source／Sink Current（lo）	$\pm 50 \mathrm{~mA}$	Note 1：Absolute maximum ratings are those values beyond which damage
DC V ${ }_{\text {CC }}$ or Ground Current per Output Pin	$\pm 50 \mathrm{~mA}$	to the device may occur．The databook specifications should be met，with－ out exception to ensure that the system design is reliable over its power supply，temperature，and output／input loading variables．Fairchild does not
Junction Temperature	$+140^{\circ} \mathrm{C}$	recommend operation of FACTTM ${ }^{\text {chercuits }}$ outside databook specifications．
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

DC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum Low Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OH}$	Minimum High Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum Low Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
I_{OZ}	Maximum 3－STATE Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{v}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
I_{IN}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\mathrm{I}_{\text {CCT }}$	Maximum ICC／Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$
I_{CC}	Max Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
${ }_{\text {OLD }}$	Minimum Dynamic Output Current（Note 3）	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
${ }^{\text {OHD }}$					－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	0.5	0.8		V	Figure 1 Figure 2 （Note 5）（Note 6）
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	5.0	－0．5	－1．0		V	Figure 1Figure 2 （Note 5）（Note 6）
$\mathrm{V}_{\text {OHP }}$	Maximum Overshoot	5.0	$\mathrm{V}_{\mathrm{OH}}+1.0$	$\mathrm{V}_{\mathrm{OH}}+1.5$		V	Figure 1Figure 2 （Note 4）（Note 6）
$\mathrm{V}_{\mathrm{OHV}}$	Minimum $\mathrm{V}_{\text {cC }}$ Droop	5.0	$\mathrm{V}_{\mathrm{OH}}-1.0$	$\mathrm{V}_{\mathrm{OH}}-1.8$		V	Figure 1Figure 2 （Note 4）（Note 6）
$\mathrm{V}_{\text {HD }}$	Minimum High Dynamic Input Voltage Level	5.0	1.7	2.0		V	（Note 4）（Note 7）
$\mathrm{V}_{\text {ILD }}$	Maximum Low Dynamic Input Voltage Level	5.0	1.2	0.8		V	（Note 4）（Note 7）
Note 2：All outputs loaded；thresholds associated with output under test． Note 3：Maximum test duration 2.0 ms ；one output loaded at a time． Note 4：Worst case package． Note 5：Maximum number of outputs that can switch simultaneously is n ．（ $n-1$ ）outputs are switched LOW and one output held LOW． Note 6：Maximum number of outputs that can switch simultaneously is $n .(n-1)$ outputs are switched HIGH and one output held HIGH． Note 7：Maximum number of data inputs（ n ）switching．$\left(\mathrm{n}-1\right.$ ）input switching 0 V to 3 V ．Input under test switching 3 V to threshold（ $\mathrm{V}_{\mathrm{ILD}}$ ）．							

Symbol	Parameter	V_{CC} (V) (Note 8)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\overline{t_{\text {PLH }}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output	5.0	$\begin{aligned} & 2.7 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 7.8 \\ & 7.8 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	5.0	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \hline 7.9 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	5.0	$\begin{aligned} & \hline 2.3 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.6 \end{aligned}$	$\begin{aligned} & \hline 7.9 \\ & 7.4 \end{aligned}$	$\begin{aligned} & \hline 2.3 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.2 \\ & 7.9 \end{aligned}$	ns

Extended AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 16 Outputs Switching (Note 10)			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ \text { (Note 11) } \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \hline 11.2 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \hline 5.6 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 13.8 \\ & 13.6 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.5 \\ & 3.4 \end{aligned}$		$\begin{aligned} & \hline 10.1 \\ & 10.0 \end{aligned}$			ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & \hline 3.6 \\ & 3.1 \end{aligned}$		$\begin{aligned} & \hline 8.9 \\ & 8.1 \end{aligned}$			ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{OSH}} \mathrm{~L} \\ & (\text { Note } 9 \text {) } \end{aligned}$	Pin to Pin Skew HL Data to Output			1.2			ns
tosLh (Note 9)	Pin to Pin Skew LH Data to Output			2.5			ns
tost (Note 9)	Pin to Pin Skew LH/HL Data to Output			4.3			ns
Note 9: Skew specification (tost). Note 10: This high-to-low, e Note 11: This capacitors in Note 12: 3-S Note 13: The	defined as the absolute value of lies to any outputs switching HIG ecification is guaranteed but not pecification is guaranteed but n standard AC load. This specific E delays are load dominated an tput Disable Time is dominated	the W to y to prop prese outpu from $0 \Omega, 2$	pagatio LH), or delay ation only. eet. the ou	for any inatio aths d h 250	separate ching LOW d switch ad capa	of the s GH and hase (i.e. place o datashe	vice. T to LOW -to-hig pF lo

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Pin Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	30	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:

Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure:

1. Verify Test Fixture Loading: Standard Load 50 pF , 500Ω.
2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
4. Set the HFS generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and affect the results of the measurement.

FIGURE 1. Quiet Output Noise Voltage Waveforms
Note 14: $\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\mathrm{OLP}}$ are measured with respect to ground reference.
Note 15: Input pulses have the following characteristics: $f=1 \mathrm{MHz}$, $\mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, skew $<150 \mathrm{ps}$.
5. Set the HFS generator input levels at 0 V LOW and 3 V HIGH for ACT devices and OV LOW and 5V HIGH for $A C$ devices. Verify levels with an oscilloscope.
$\mathrm{V}_{\text {OLP }} / \mathrm{V}_{\text {OLV }}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure $V_{\text {OLP }}$ and $V_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable. Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$V_{\text {ILD }}$ and $V_{\text {IHD }}$:
- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as $V_{\text {ILD }}$.
- Next decrease the input HIGH voltage level on the, V_{IH}, until the output begins to oscillate or steps out a mins of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {IHD }}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

FIGURE 2. Simultaneous Switching Test Circuit

74ACTQ16240 16-Bit Inverting Buffer/Line Driver with 3-STATE Outputs

Fairchild does not assume ary responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at ary time without notice to change said circuitry and spedifications.

