MC74VHC1G00

Single 2-Input NAND Gate

The MC74VHC1G00 is an advanced high speed CMOS 2-input NAND gate fabricated with silicon gate CMOS technology.

The internal circuit is composed of multiple stages, including a buffer output which provides high noise immunity and stable output.

The MC74VHC1G00 input structure provides protection when voltages up to 7.0 V are applied, regardless of the supply voltage. This allows the MC74VHC1G00 to be used to interface 5.0 V circuits to 3.0 V circuits.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=3.0 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}(\operatorname{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Chip Complexity: FETs = 56
- Pb-Free Packages are Available

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
MARKING DIAGRAMS

(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT	
1	IN B
2	IN A
3	GND
4	OUT Y
5	V CC

FUNCTION TABLE

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	V
IIK	DC Input Diode Current	-20	mA
lok	DC Output Diode Current	± 20	mA
Iout	DC Output Sink Current	± 12.5	mA
Icc	DC Supply Current per Supply Pin	± 25	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance SC70-5/SC-88A (Note 1) TSOP-5	$\begin{aligned} & 350 \\ & 230 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C} \quad$ SC70-5/SC-88A	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >200 \\ N / A \end{gathered}$	V
ILATCHUP	Latchup Performance \quad Above V_{CC} and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	± 500	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage	0.0	5.5	V
$\mathrm{~V}_{\mathrm{OUT}}$	DC Output Voltage	0.0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature Range	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0
		$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	100
20	$\mathrm{~ns} / \mathrm{V}$			

DEVICE JUNCTION TEMPERATURE VERSUS

TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 3. Failure Rate vs. Time Junction Temperature

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$			$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$		V
V_{IL}	Maximum Low-Level Input Voltage		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$			$\begin{aligned} & \hline 0.5 \\ & 0.9 \\ & 1.35 \\ & 1.65 \end{aligned}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$	$\begin{array}{\|c} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		1.9 2.9 4.4		1.9 2.9 4.4		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}}=-4 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$		$\begin{aligned} & 2.34 \\ & 3.66 \end{aligned}$		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\begin{array}{\|c} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		0.0 0.0 0.0	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		0.1 0.1 0.1		$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$		$\begin{aligned} & 0.52 \\ & 0.52 \end{aligned}$	
1 N	Maximum Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	$\begin{aligned} & 0 \text { to } \\ & 5.5 \end{aligned}$			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
Icc	Maximum Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND	5.5			1.0		10		40	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL }^{\text {ten }} \end{aligned}$	Maximum Propagation Delay, Input A or B to Y	$\begin{aligned} \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \vee \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.6 \end{aligned}$	$\begin{gathered} 7.9 \\ 11.4 \end{gathered}$		$\begin{gathered} 9.5 \\ 13.0 \end{gathered}$		$\begin{aligned} & 11.0 \\ & 15.5 \end{aligned}$	ns
		$\begin{array}{r} \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{array}$		$\begin{aligned} & \hline 3.0 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$		$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	
$\mathrm{Cl}_{\text {IN }}$	Maximum Input Capacitance			5.5	10		10		10	pF

		Typical @ 25 ${ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{V}$	
C $_{\text {PD }}$	Power Dissipation Capacitance (Note 6)	10	pF

6. C $_{\text {PD }}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

MC74VHC1G00

Figure 4. Switching Waveforms

*Includes all probe and jig capacitance. A $1-\mathrm{MHz}$ square input wave is recommended for propagation delay tests.

Figure 5. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping †
MC74VHC1G00DFT1	SC70-5/SC-88A/SOT-353	
MC74VHC1G00DFT1G	SC70-5/SC-88A/SOT-353 (Pb-Free)	
MC74VHC1G00DFT2	SC70-5/SC-88A/SOT-353	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC74VHC1G00

PACKAGE DIMENSIONS

SC-88A/SOT-353/SC-70
 DF SUFFIX
 5 LEAD PACKAGE
 CASE 419A-02
 ISSUE J

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE MOLD FLA
BURRS.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.0045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65 BSC	
H	---	0.004	---	0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20 REF	
S	0.079	0.087	2.00	

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC74VHC1G00

PACKAGE DIMENSIONS

TSOP-5
CASE 483-02
ISSUE F

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS
2. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS THICKNESS IS THE MI
OF BASE MATERIAL.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
4. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY

DIM	MILLIMETERS	
	MIN	
A	MAX	
\mathbf{B}	3.00 BSC	
\mathbf{C}	0.50	BSC
\mathbf{D}	0.25	1.10
\mathbf{G}	0.95	
$\mathbf{B S C}$		
\mathbf{H}	0.01	0.10
\mathbf{J}	0.10	0.26
\mathbf{K}	0.20	0.60
\mathbf{L}	1.25	1.55
\mathbf{M}	0	10°
\mathbf{S}	2.50	3.00

SOLDERING FOOTPRINT*

 details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, after ather
 and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

