CD4071BC • CD4081BC Quad 2-Input OR Buffered B Series Gate • **Quad 2-Input AND Buffered B Series Gate**

General Description

FAIRCHILD

SEMICONDUCTOR

The CD4071BC and CD4081BC quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

All inputs protected against static discharge with diodes to V_{DD} and $V_{\text{SS}}.$

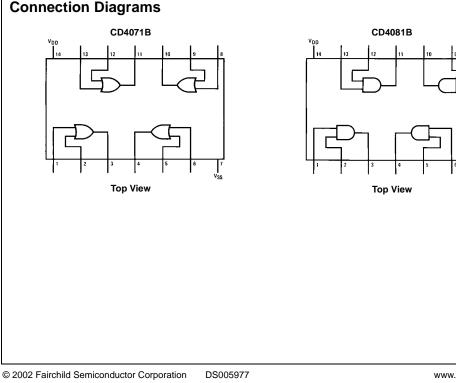
Fan out of 2 driving 74L or 1 driving 74LS ■ 5V–10V–15V parametric ratings

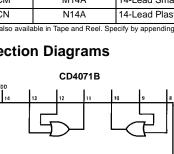
Features

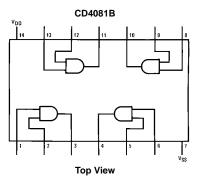
Symmetrical output characteristics

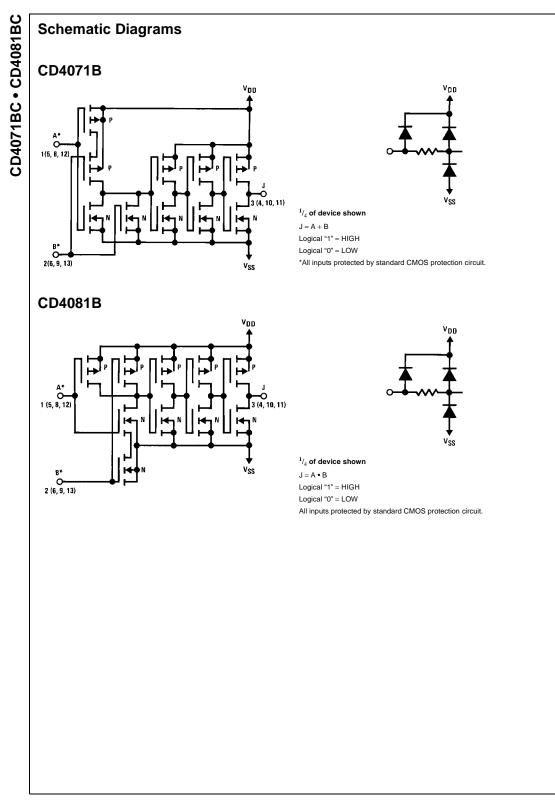
■ Low power TTL compatibility:

■ Maximum input leakage 1 µA at 15V over full temperature range


October 1987


Revised April 2002


Ordering Code:


Package Number	Package Description
M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
	M14A N14A M14A

Devices are also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

www.fairchildsemi.com

2

(Note 2)

Recommended Operating Conditions

Voltage at Any Pin	-0.5V to V _{DD} $+0.5V$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
V _{DD} Range	–0.5 V_{DC} to +18 V_{DC}
Storage Temperature (T _S)	-65°C to +150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Operating Range (V_{DD}) 3 V_{DC} to 15 V_{DC} Operating Temperature Range (T_A) -55°C to +125°C CD4071BC, CD4081BC -55°C to +125°C Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Tempera

ture Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. **Note 2:** All voltages measured with respect to V_{SS} unless otherwise speci-

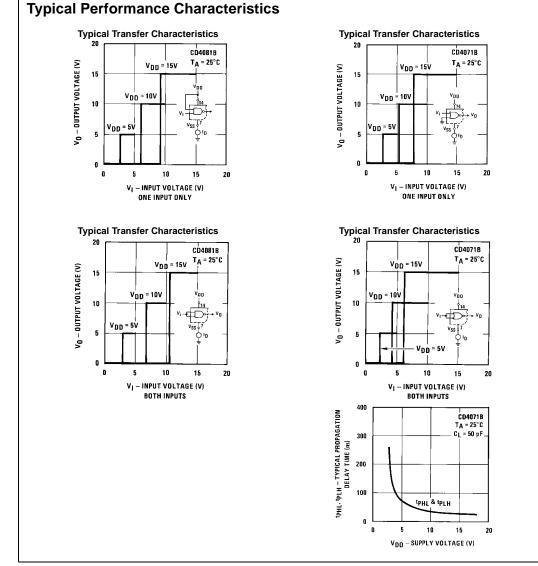
Note 2: All voltages measured with respect to v_{SS} unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	-5	–55°C		+25°C			+125°C	
Symbol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$		0.25		0.004	0.25		7.5	
	Current	$V_{DD} = 10V$		0.5		0.005	0.5		15	μA
		$V_{DD} = 15V$		1.0		0.006	1.0		30	
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	
(Output Voltage	$V_{DD} = 10V \qquad I_O < 1 \ \mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		
	Output Voltage	$V_{DD} = 10V \qquad I_O < 1 \ \mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V$		1.5		2	1.5		1.5	
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V$		4.0		6	4.0		4.0	
	HIGH Level	$V_{DD} = 5V, V_{O} = 4.5V$	3.5		3.5	3		3.5		
	Input Voltage	$V_{DD} = 10V, V_{O} = 9.0V$	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_O = 13.5V$	11.0		11.0	9		11.0		
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	Current	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
	(Note 3)	$V_{DD} = 15V, V_O = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output $V_{DD} = 5V, V_O = 4.6V$		-0.64		-0.51	-0.88		-0.36		
	Current	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
	(Note 3)	$V_{DD} = 15V, V_O = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	<u> </u>
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μA

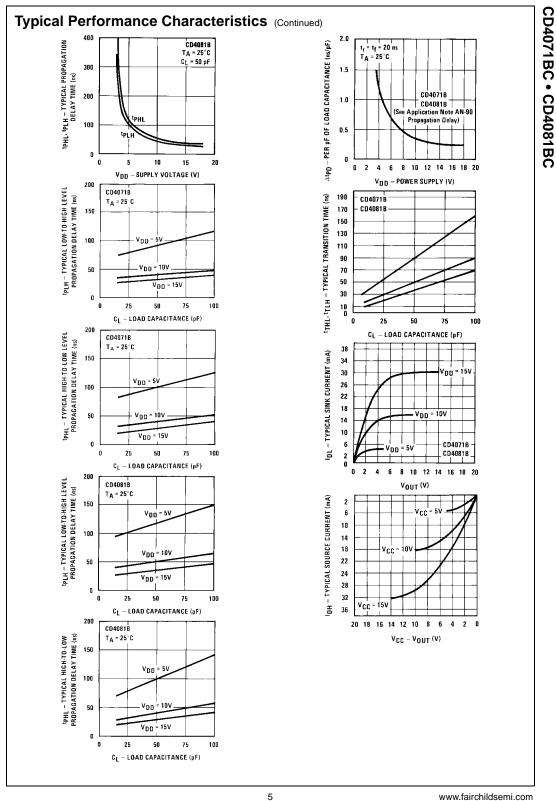
Note 3: I_{OH} and I_{OL} are tested one output at a time.

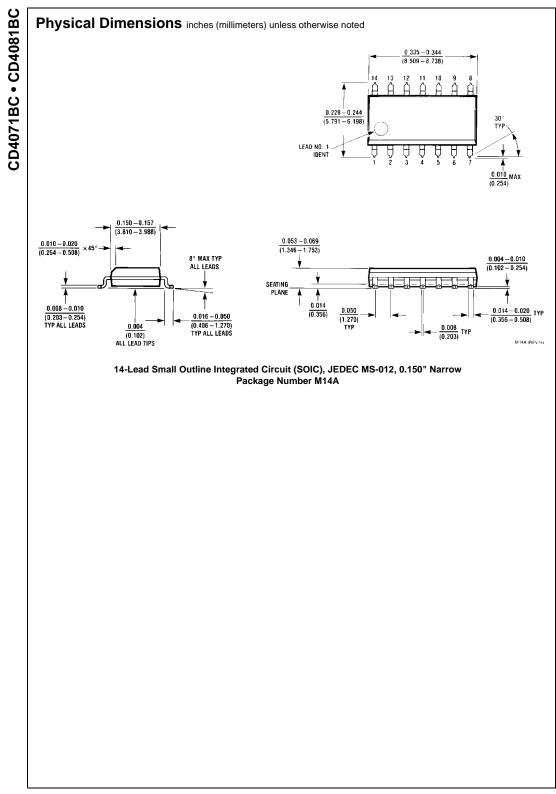
AC Electrical Characteristics (Note 4)

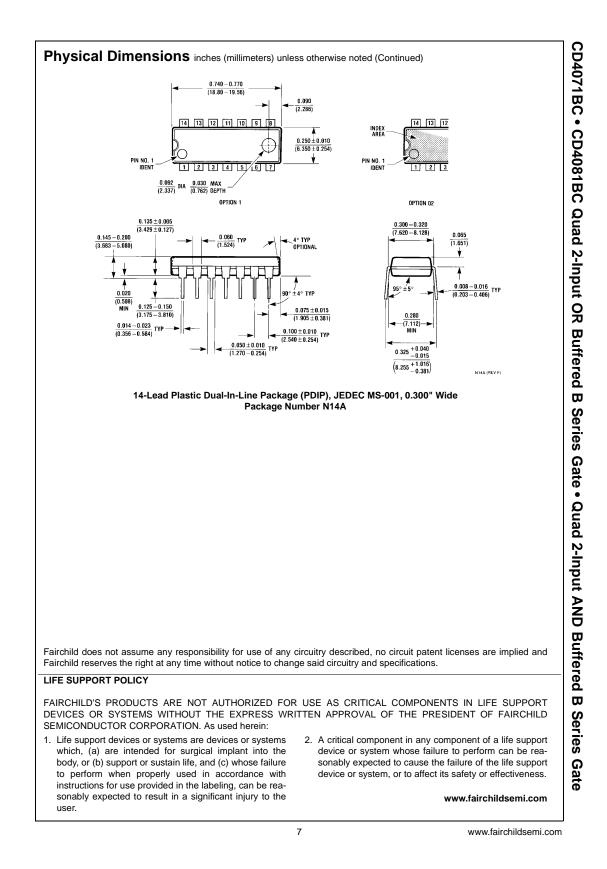

CD4071BC T_A = 25°C, Input t_r; t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω , Typical temperature coefficient is 0.3%/°C

Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay Time,	$V_{DD} = 5V$	100	250	
	HIGH-to-LOW Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	
t _{PLH}	Propagation Delay Time,	$V_{DD} = 5V$	90	250	
	LOW-to-HIGH Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	
C _{IN}	Average Input Capacitance	Any Input	5	7.5	pF
CPD	Power Dissipation Capacity	Any Gate	18		pF

3


CD4081BC TA	$= 25^{\circ}$ C. Input t _r : t _f = 20 ns. C ₁	= 50 pF, R_1 = 200 k Ω , Typical tempe	rature coefficient is 0.3	3%/°C	
Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay Time,	$V_{DD} = 5V$	100	250	
	HIGH-to-LOW Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	
t _{PLH}	Propagation Delay Time,	$V_{DD} = 5V$	120	250	
	LOW-to-HIGH Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	
C _{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate	18		pF


Note 5: AC Parameters are guaranteed by DC correlated testing.



www.fairchildsemi.com

4

