## FAIRCHILD

SEMICONDUCTOR

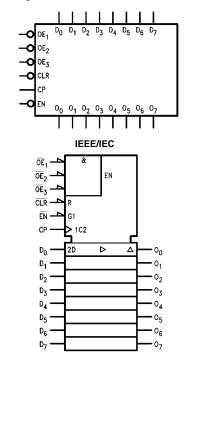
# 74F825 8-Bit D-Type Flip-Flop

#### **General Description**

The 74F825 is an 8-bit buffered register. It has Clock Enable and Clear features which are ideal for parity bus interfacing in high performance microprogramming systems. Also included in the 74F825 are multiple enables that allow multi-user control of the interface.

#### **Features**

- 3-STATE output
- Clock enable and clear
- Multiple output enables


April 1988

74F825 8-Bit D-Type Flip-Flop

#### **Ordering Code:**

| Order Number           | Package Number                                                                                            | Package Description                                                       |  |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| 74F825SC               | M24B                                                                                                      | 24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide |  |  |  |  |  |
| 74F825SPC              | N24C                                                                                                      | 24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide     |  |  |  |  |  |
| Devices also available | Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. |                                                                           |  |  |  |  |  |

#### Logic Symbols



#### **Connection Diagram**

|                  |        | <del>. ,</del> |                     |
|------------------|--------|----------------|---------------------|
|                  | 1      | $\bigcirc$     | 24 V <sub>CC</sub>  |
| OE2-             | 2      |                | 23 - OE3            |
| D <sub>0</sub> - | 3      |                | 22 00               |
| D1               | 4      |                | 21 01               |
| D <sub>2</sub> - | 5      |                | 20 02               |
| D3-              | 6      |                | · · · · ·           |
| -                | 7      |                | 5                   |
| D4 -             | 7<br>8 |                | -                   |
| D <sub>5</sub> — |        |                | 17 — 0 <sub>5</sub> |
| D <sub>6</sub> - | 9      |                | 16 — 0 <sub>6</sub> |
| D7-              | 10     |                | 15 0 <sub>7</sub>   |
| CLR -            | 11     |                | 14 — EN             |
| GND —            | 12     |                | 13 CP               |
|                  |        |                |                     |
|                  |        |                |                     |

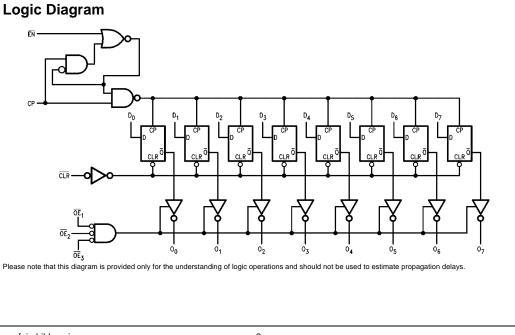
© 2000 Fairchild Semiconductor Corporation DS009597

# 74F825

#### **Unit Loading/Fan Out**

| Pin Names                                           | Description          | U.L.          | Input I <sub>IH</sub> /I <sub>IL</sub>  |  |
|-----------------------------------------------------|----------------------|---------------|-----------------------------------------|--|
| Pin Names                                           | Description          | HIGH/LOW      | Output I <sub>OH</sub> /I <sub>OL</sub> |  |
| D <sub>0</sub> –D <sub>7</sub>                      | Data Inputs          | 1.0/1.0       | 20 μA/–0.6 mA                           |  |
| O <sub>0</sub> –O <sub>7</sub>                      | 3-STATE Data Outputs | 150/40 (33.3) | -3 mA/24 mA (20 mA)                     |  |
| $\overline{OE}_1, \overline{OE}_2, \overline{OE}_3$ | Output Enable Input  | 1.0/1.0       | 20 μA/–0.6 mA                           |  |
| EN                                                  | Clock Enable         | 1.0/1.0       | 20 μA/–0.6 mA                           |  |
| CLR                                                 | Clear                | 1.0/1.0       | 20 μA/–0.6 mA                           |  |
| CP                                                  | Clock Input          | 1.0/2.0       | 20 μA/–1.2 mA                           |  |

#### **Functional Description**


The 74F825 consists of eight D-type edge-triggered flip-flops. This device has 3-STATE true outputs and is organized in broadside pinning. In addition to the clock and output enable pins, the buffered clock (CP) and buffered Output Enable ( $\overline{OE}$ ) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH CP transition. With the  $\overline{OE}$  LOW the contents of the flip-flops are available at the outputs. When the  $\overline{OE}$  is HIGH, the  $\underline{OE}$  input does not affect the state of the flip-flops. The 74F825 has Clear ( $\overline{CLR}$ ) and Clock Enable (EN) pins.

When the  $\overline{\text{CLR}}$  is LOW and the  $\overline{\text{OE}}$  is LOW the outputs are LOW. When  $\overline{\text{CLR}}$  is HIGH, data can be entered into the flip-flops. When  $\overline{\text{EN}}$  is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When the  $\overline{\text{EN}}$  is HIGH the outputs do not change state, regardless of the data or clock input transitions.

#### **Function Table**

|       | Inp                                      | outs |    |   | Internal | Output | Function          |  |  |
|-------|------------------------------------------|------|----|---|----------|--------|-------------------|--|--|
| OE    | CLR                                      | EN   | СР | D | Q        | 0      | Function          |  |  |
| Н     | Н                                        | L    | Н  | Х | NC       | Z      | Hold              |  |  |
| н     | н                                        | L    | L  | Х | NC       | Z      | Hold              |  |  |
| н     | н                                        | Н    | Х  | Х | NC       | Z      | Hold              |  |  |
| L     | н                                        | Н    | Х  | Х | NC       | NC     | Hold              |  |  |
| н     | L                                        | Х    | Х  | Х | н        | Z      | Clear             |  |  |
| L     | L                                        | Х    | Х  | Х | н        | L      | Clear             |  |  |
| н     | н                                        | L    | ~  | L | н        | Z      | Load              |  |  |
| н     | н                                        | L    | ~  | Н | L        | Z      | Load              |  |  |
| L     | н                                        | L    | ~  | L | н        | L      | Data Available    |  |  |
| L     | н                                        | L    | ~  | Н | L        | н      | Data Available    |  |  |
| L     | н                                        | L    | н  | Х | NC       | NC     | No Change in Data |  |  |
| L     | н                                        | L    | L  | х | NC       | NC     | No Change in Data |  |  |
| L = L | L = LOW Voltage Level Z = High Impedance |      |    |   |          |        |                   |  |  |

H = HIGH Voltage Level X = Immaterial Z = High Impedance  $\checkmark$  = LOW-to-HIGH Transition NC = No Change



#### Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias  $V_{CC}$  Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with  $V_{CC} = 0V$ ) Standard Output 3-STATE Output Current Applied to Output

-65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V<sub>CC</sub>

-0.5V to +5.5V

# Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

74F825

0°C to +70°C +4.5V to +5.5V

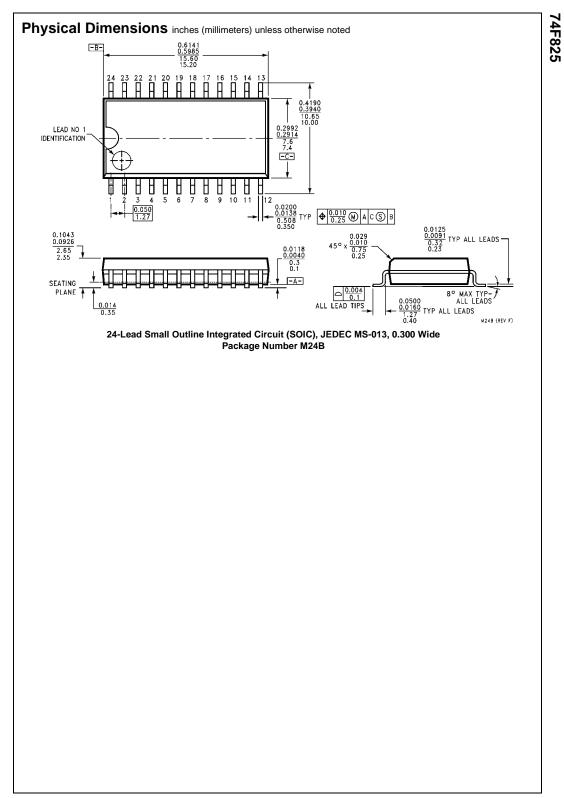
**Note 1:** Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

| in LOW State (Max) | twice the rated $I_{OL}$ (mA) |
|--------------------|-------------------------------|
|                    |                               |

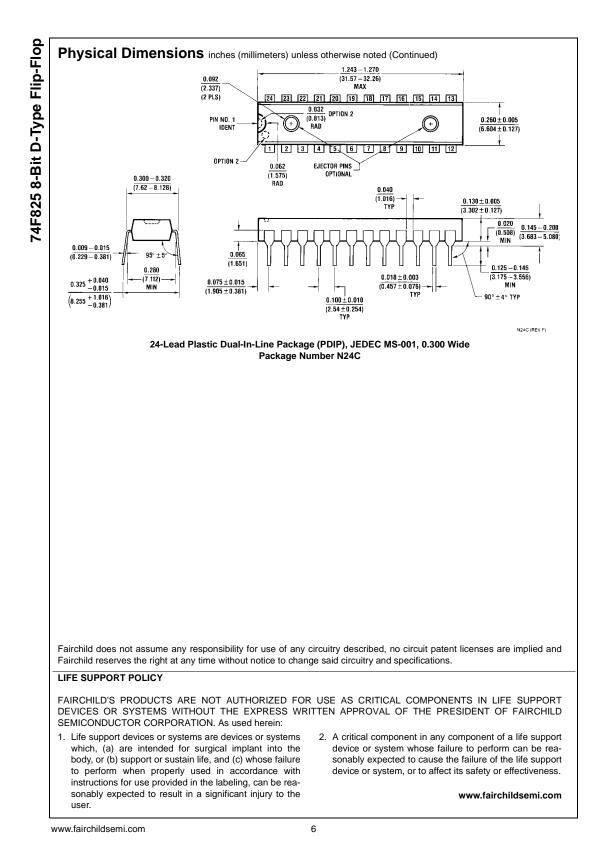
| Symbol           | Parameter                    |                     | Min  | Тур | Max  | Units | V <sub>cc</sub> | Conditions                         |  |
|------------------|------------------------------|---------------------|------|-----|------|-------|-----------------|------------------------------------|--|
| V <sub>IH</sub>  | Input HIGH Voltage           |                     | 2.0  |     |      | V     |                 | Recognized as a HIGH Signa         |  |
| VIL              | Input LOW Voltage            |                     |      |     | 0.8  | V     |                 | Recognized as a LOW Signa          |  |
| V <sub>CD</sub>  | Input Clamp Diode Voltage    |                     |      |     | -1.2 | V     | Min             | I <sub>IN</sub> = -18 mA           |  |
| V <sub>OH</sub>  | Output HIGH                  | 10% V <sub>CC</sub> | 2.5  |     |      |       |                 | I <sub>OH</sub> = -1 mA            |  |
|                  | Voltage                      | 10% V <sub>CC</sub> | 2.4  |     |      | v     | Min             | $I_{OH} = -3 \text{ mA}$           |  |
|                  |                              | 5% V <sub>CC</sub>  | 2.7  |     |      | v     | IVIIN           | $I_{OH} = -1 \text{ mA}$           |  |
|                  |                              | 5% V <sub>CC</sub>  | 2.7  |     |      |       |                 | $I_{OH} = -3 \text{ mA}$           |  |
| V <sub>OL</sub>  | Output LOW Voltage           | 10% V <sub>CC</sub> |      |     | 0.5  | V     | Min             | I <sub>OL</sub> = 24 mA            |  |
| I <sub>IH</sub>  | Input HIGH                   |                     |      |     | 5.0  |       | Max             | V <sub>IN</sub> = 2.7V             |  |
|                  | Current                      |                     |      |     | 5.0  | μΑ    | IVIAX           | $v_{IN} = 2.7 v$                   |  |
| I <sub>BVI</sub> | Input HIGH Current           |                     |      |     | 7.0  | μA    | Max             | V <sub>IN</sub> = 7.0V             |  |
|                  | Breakdown Test               |                     |      |     | 7.0  | μΑ    | IVIAX           | v <sub>IN</sub> = 7.00             |  |
| I <sub>CEX</sub> | Output HIGH                  |                     |      |     | 50   | μA    | Max             | $V_{OUT} = V_{CC}$                 |  |
|                  | Leakage Current              |                     |      |     | 50   | μΑ    | IVIAX           | V <sub>OUT</sub> = V <sub>CC</sub> |  |
| V <sub>ID</sub>  | Input Leakage                |                     | 4.75 |     |      | V     | 0.0             | I <sub>ID</sub> = 1.9 μA           |  |
|                  | Test                         |                     | 4.75 |     |      | v     | 0.0             | All Other Pins Grounded            |  |
| l <sub>OD</sub>  | Output Leakage               |                     |      |     | 3.75 | ۸     | 0.0             | $V_{IOD} = 150 \text{ mV}$         |  |
|                  | Circuit Current              |                     |      |     | 3.75 | μΑ    | 0.0             | All Other Pins Grounded            |  |
| IIL              | Input LOW Current            |                     |      |     | -0.6 | mA    | Max             | $V_{IN} = 0.5V$                    |  |
| I <sub>OZH</sub> | Output Leakage Current       |                     |      |     | 50   | μA    | Max             | $V_{OUT} = 2.7V$                   |  |
| I <sub>OZL</sub> | Output Leakage Current       |                     |      |     | -50  | μA    | Max             | $V_{OUT} = 0.5V$                   |  |
| los              | Output Short-Circuit Current |                     | -60  |     | -150 | mA    | Max             | $V_{OUT} = 0V$                     |  |
| I <sub>ZZ</sub>  | Buss Drainage Test           |                     |      |     | 500  | μA    | 0.0V            | V <sub>OUT</sub> = 5.25V           |  |
| I <sub>CCZ</sub> | Power Supply Current         |                     |      | 75  | 90   | mA    | Max             | $V_{O} = HIGH Z$                   |  |

#### **DC Electrical Characteristics**


74F825

### **AC Electrical Characteristics**

| Symbol           | Parameter                                  |     | $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$ |      |     | $\label{eq:T_A} \begin{split} T_A &= -55^\circ C \ to \ +125^\circ C \\ V_{CC} &= +5.0V \\ C_L &= 50 \ pF \end{split}$ |     | $T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$ |     |
|------------------|--------------------------------------------|-----|-------------------------------------------------------------|------|-----|------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------|-----|
|                  |                                            | Min | Тур                                                         | Max  | Min | Max                                                                                                                    | Min | Max                                                                                    |     |
| f <sub>MAX</sub> | Maximum Clock Frequency                    | 100 | 160                                                         |      | 60  |                                                                                                                        | 70  |                                                                                        | MHz |
| t <sub>PLH</sub> | Propagation Delay                          | 2.0 | 6.5                                                         | 9.5  | 2.0 | 10.5                                                                                                                   | 2.0 | 10.5                                                                                   |     |
| t <sub>PHL</sub> | CP to O <sub>n</sub>                       | 2.0 | 6.6                                                         | 9.5  | 2.0 | 10.5                                                                                                                   | 2.0 | 10.5                                                                                   | ns  |
| t <sub>PHL</sub> | Propagation Delay<br>CLR to O <sub>n</sub> | 4.0 | 7.4                                                         | 12.0 | 4.0 | 13.0                                                                                                                   | 4.0 | 13.0                                                                                   | ns  |
| t <sub>PZH</sub> | Output Enable Time                         | 2.0 | 6.5                                                         | 10.5 | 2.0 | 13.0                                                                                                                   | 2.0 | 11.5                                                                                   |     |
| t <sub>PZL</sub> | OE to On                                   | 2.0 | 6.6                                                         | 10.5 | 2.0 | 13.0                                                                                                                   | 2.0 | 11.5                                                                                   |     |
| t <sub>PHZ</sub> | Output Disable TIme                        | 1.5 | 3.5                                                         | 7.0  | 1.0 | 7.5                                                                                                                    | 1.5 | 7.5                                                                                    | ns  |
| t <sub>PLZ</sub> | OE to On                                   | 1.5 | 3.3                                                         | 7.0  | 1.0 | 7.5                                                                                                                    | 1.5 | 7.5                                                                                    |     |


# **AC Operating Requirements**

|                    |                         |                   | +25°C            |     | $\textbf{T}_{\textbf{A}} = -\textbf{55}^{\circ}\textbf{C} \text{ to } +\textbf{125}^{\circ}\textbf{C}$ |     |                  |     |
|--------------------|-------------------------|-------------------|------------------|-----|--------------------------------------------------------------------------------------------------------|-----|------------------|-----|
| Symbol             | Parameter               | V <sub>cc</sub> = | $V_{CC} = +5.0V$ |     | $V_{CC} = +5.0V$                                                                                       |     | $V_{CC} = +5.0V$ |     |
|                    |                         | Min               | Max              | Min | Max                                                                                                    | Min | Max              | 1   |
| t <sub>S</sub> (H) | Setup Time, HIGH or LOW | 2.5               |                  | 4.0 |                                                                                                        | 3.0 |                  |     |
| t <sub>S</sub> (L) | D <sub>n</sub> to CP    | 2.5               |                  | 4.0 |                                                                                                        | 3.0 |                  | ns  |
| t <sub>H</sub> (H) | Hold Time, HIGH or LOW  | 2.5               |                  | 2.5 |                                                                                                        | 2.5 |                  | 115 |
| t <sub>H</sub> (L) | D <sub>n</sub> to CP    | 2.5               |                  | 2.5 |                                                                                                        | 2.5 |                  |     |
| t <sub>S</sub> (H) | Setup Time, HIGH or LOW | 4.5               |                  | 5.0 |                                                                                                        | 5.0 |                  |     |
| t <sub>S</sub> (L) | EN to CP                | 2.5               |                  | 3.0 |                                                                                                        | 3.0 |                  | ns  |
| t <sub>H</sub> (H) | Hold Time, HIGH or LOW  | 2.0               |                  | 3.0 |                                                                                                        | 1.0 |                  | 115 |
| t <sub>H</sub> (L) | EN to CP                | 0                 |                  | 2.0 |                                                                                                        | 0   |                  |     |
| t <sub>W</sub> (H) | CP Pulse Width          | 5.0               |                  | 6.0 |                                                                                                        | 6.0 |                  | ns  |
| t <sub>W</sub> (L) | HIGH or LOW             | 5.0               |                  | 6.0 |                                                                                                        | 6.0 |                  | 115 |
| t <sub>W</sub> (L) | CLR Pulse Width, LOW    | 5.0               |                  | 5.0 |                                                                                                        | 5.0 |                  | ns  |
| t <sub>REC</sub>   | CLR Recovery Time       | 5.0               |                  | 5.0 |                                                                                                        | 5.0 |                  | ns  |



www.fairchildsemi.com

5

