

Truth Table

Inputs					Outputs	
$\bar{S}_{\text {D }}$	$\bar{C}_{\text {D }}$	CP	J	K	Q	Q
L	H	X	X	X	H	L
H	L	x	X	X	L	H
L	L	X	X	X	H	H
H	H	\sim	h	h	$\overline{\mathrm{Q}}_{0}$	Q_{0}
H	H	\checkmark	1	h	L	H
H	H	\checkmark	h	1	H	L
H	H	\sim	1	1	Q_{0}	$\overline{\mathrm{Q}}_{0}$

H (h) = HIGH Voltage Leve
L (I) = LOW Voltage Level
$X=$ Immaterial
$ح=$ HIGH-to-LOW Clock Transition
$\mathrm{Q}_{0}\left(\bar{Q}_{0}\right)=$ Before HIGH-to-LOW Transition of Clock
Lower case letters indicate the state of the referenced input or output one setup time prior to the HIGH-to-LOW clock transition.

Logic Diagram

(One Half Shown)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $V_{C C}$ Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA
Voltage Applied to Output

in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	
Standard Output	-0.5 V to V_{CC}
3-STATE Output	-0.5 V to +5.5 V

Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$

Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{V}_{\text {cc }}$	Conditions
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage $\quad 10 \% \mathrm{~V}_{\mathrm{CC}}$			0.5	V	Min	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$
$\overline{I_{\mathrm{H}}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {cex }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All other pins grounded
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {IOD }}=150 \mathrm{mV}$ All other pins grounded
ILL	Input LOW Current			$\begin{aligned} & \hline-0.6 \\ & -2.4 \\ & -3.0 \\ & \hline \end{aligned}$	mA	Max	
Ios	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current		12	19	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CLL }}$	Power Supply Current		12	19	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
${ }_{\text {f MAX }}$	Maximum Clock Frequency	85	105		80		MHz
tPLH tphL	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\mathrm{CP}}_{\mathrm{n}} \text { to } \mathrm{Q}_{\mathrm{n}} \text { or } \overline{\mathrm{Q}}_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 7.5 \end{aligned}$	ns
tPLH tpHL	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}}, \overline{\mathrm{~S}}_{\mathrm{Dn}} \text { to } \overline{\mathrm{Q}}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	4.0		5.0		ns
$\mathrm{t}_{\text {S }}(\mathrm{L})$	J_{n} or K_{n} to $\overline{\mathrm{CP}}_{\mathrm{n}}$	3.0		3.5		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	0		0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	J_{n} or K_{n} to $\overline{\mathrm{CP}}_{\mathrm{n}}$	0		0		
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	$\overline{\mathrm{CP}}$ Pulse Width	4.5		5.0		
	HIGH or LOW	4.5		5.0		
$t_{w}(\mathrm{~L})$	Pulse Width, LOW $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$	4.5		5.0		ns
$\mathrm{t}_{\text {REC }}$	Recovery Time $\overline{\mathrm{S}}_{\mathrm{Dn}}, \overline{\mathrm{C}}_{\mathrm{Dn}} \text { to } \overline{\mathrm{CP}}$	4.0		5.0		ns

Physical Dimensions inches（millimeters）unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
