

August 1992 Revised April 2000

DM74LS174 • DM74LS175 Hex/Quad D-Type Flip-Flops with Clear

General Description

These positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the quad (175) versions feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the HIGH or LOW level, the D input signal has no effect at the output.

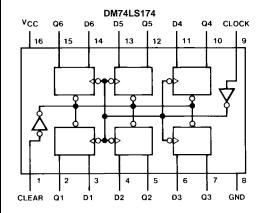
Features

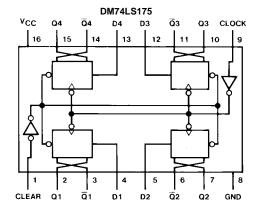
- DM74LS174 contains six flip-flops with single-rail outputs
- DM74LS175 contains four flip-flops with double-rail outputs
- Buffered clock and direct clear inputs
- Individual data input to each flip-flop
- Applications include:

Buffer/storage registers

Shift registers

Pattern generators


- Typical clock frequency 40 MHz
- Typical power dissipation per flip-flop 14 mW


Ordering Code:

Order Number	Package Number	Package Description
DM74LS174M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS174SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS174N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM74LS175M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS175SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS175N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

© 2000 Fairchild Semiconductor Corporation

DS006404

Function Table


(Each Flip-Flop)

Inputs			Out	puts
Clear	Clock	D	Q	<u>Q</u> †
L	X	Х	L	Н
Н	1	Н	Н	L
Н	1	L	L	Н
Н	L	Х	Q_0	\overline{Q}_0

- H = HIGH Level (steady state)
 L = LOW Level (steady state)
 X = Don't Care

 ↑ = Transition from LOW-to-HIGH level
 Q₀ = The level of Q before the indicated steady-state input conditions were established.
- † = DM74LS175 only

Logic Diagrams

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } +150^{\circ}\text{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74LS174 Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.75	5	5.25	V	
V _{IH}	HIGH Level Input Voltage		2			V	
V _{IL}	LOW Level Input Voltage				0.8	V	
I _{OH}	HIGH Level Output Current				-0.4	mA	
I _{OL}	LOW Level Output Current				8	mA	
f _{CLK}	Clock Frequency (Note 2)		0		30	MHz	
f _{CLK}	Clock Frequency (Note 3)		0		25	MHz	
t _W	Pulse Width	Clock	20			no	
	(Note 4)	Clear	20			ns	
t _{SU}	Data Setup Time (Note 4)		20			ns	
t _H	Data Hold Time (Note 4)		0			ns	
t _{REL}	Clear Release Time (Note 4)		25			ns	
T _A	Free Air Operating Temperat	ure	0		70	°C	

Note 2: $C_L = 15$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C and $V_{CC} = 5$ V.

Note 3: $C_L = 50$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C and $V_{CC} = 5$ V.

Note 4: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

DM74LS174 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 5)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		2.7	3.4		v
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max			0.35	0.5	
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$			0.55	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min			0.25	0.4	
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
I _{IL}	LOW Level	V _{CC} = Max	Clock			-0.4	
	Input Current	$V_I = 0.4V$	Clear			-0.4	mA
			Data			-0.36	
Ios	Short Circuit Output Current	V _{CC} = Max (Note 6)		-20		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 7)	•		16	26	mA

Note 5: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 7: With all outputs OPEN and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5V applied to the clock.

DM74LS174 • DM74LS175

DM74LS174 Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ $R_L = 2 k\Omega$ From (Input) $C_L = 50 \ pF$ C_L = 15 pF Symbol To (Output) Units Parameter Min Min 30 25 MHz Maximum Clock Frequency Propagation Delay Time t_{PLH} Clock to Output 30 ns LOW-to-HIGH Level Output Propagation Delay Time Clock to Output 30 36 HIGH-to-LOW Level Output Propagation Delay Time Clear to Output 35 42 ns HIGH-to-LOW Level Output

Symbol	Parameter	•	Min	Nom	Max	Units	
√cc	Supply Voltage		4.75	5	5.25	V	
′ін	HIGH Level Input Voltage		2			V	
/ _{IL}	LOW Level Input Voltage				0.8	V	
ОН	HIGH Level Output Current				-0.4	mA	
OL	LOW Level Output Current				8	mA	
CLK	Clock Frequency (Note 8)		0		30	MHz	
CLK	Clock Frequency (Note 9)		0		25	MHz	
W	Pulse Width	Clock	20			ns	
	(Note 10)	Clear	20				
SU	Data Setup Time (Note 10)		20			ns	
н	Data Hold Time (Note 10)		0			ns	
REL	Clear Release Time (Note 10)		25			ns	
T _A	Free Air Operating Temperatur	е	0		70	°C	

Note 8: $C_L = 15$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C and $V_{CC} = 5V$.

Note 9: $C_L=50$ pF, $R_L=2$ $k\Omega,\,T_A=25^{\circ}C$ and $V_{CC}=5V.$

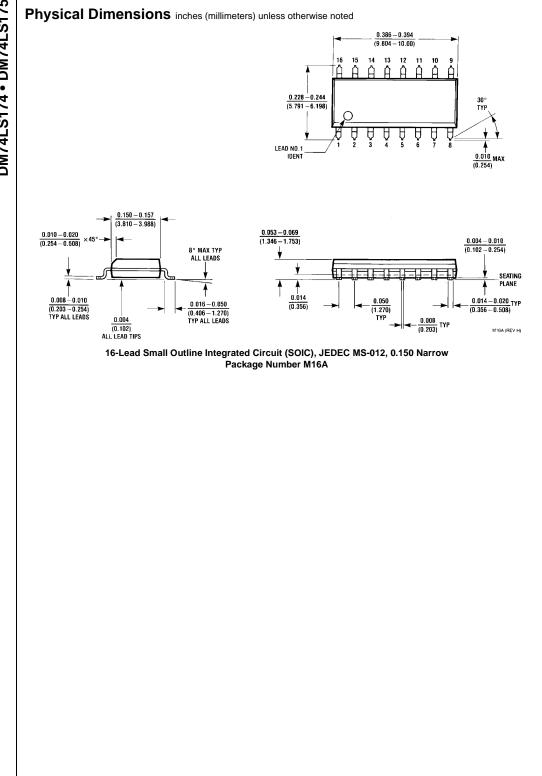
Note 10: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

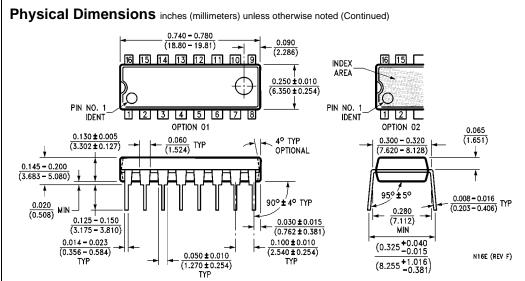
DM74LS175 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 11)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		2.1	3.4		V
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max			0.35		
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$			0.33	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min			0.25	0.4	
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
I _{IL}	LOW Level	V _{CC} = Max	Clock			-0.4	
	Input Current	$V_I = 0.4V$	Clear			-0.4	mA
			Data			-0.36	
Ios	Short Circuit Output Current	V _{CC} = Max (Note 12)		-20		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 13)			11	18	mA

Note 11: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.


Note 12: Not more than one output should be shorted at a time, and the duration should not exceed one second.


Note 13: With all outputs OPEN and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5V applied to the clock input.

DM74LS175 Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

	Parameter	From (Input) To (Output)	$R_L = 2 k\Omega$				
Symbol			C _L =	C _L = 15 pF		C _L = 50 pF	
			Min	Max	Min	Max	1
f _{MAX}	Maximum Clock Frequency		30		25		MHz
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Q or Q		30		32	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Q or Q		30		36	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clear to Q		25		29	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Q		35		42	ns

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com