

74ABT16823A
 18-bit bus interface D-type flip-flop with reset and enable (3-State)

Product data
Replaces data sheet 74ABT16823A/ABTH16823A of 1998 Feb 27

PHILIPS

18-bit bus-interface D-type flip-flop

 with reset and enable (3-State)
74ABT16823A

FEATURES

- Two sets of high speed parallel registers with positive edge-triggered D-type flip-flops
- Ideal where high speed, light loading, or increased fan-in are required with MOS microprocessors
- Live insertion/extraction permitted
- Power-up 3-State
- Power-up Reset
- Output capability: $+64 \mathrm{~mA} /-32 \mathrm{~mA}$
- Latch-up protection exceeds 500 mA per Jedec Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

DESCRIPTION

The 74ABT16823A 18-bit bus interface register is designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider data/address paths of buses carrying parity.
The 74ABT16823A has two 9-bit wide buffered registers with Clock Enable (nCE) and Master Reset (nMR) which are ideal for parity bus interfacing in high microprogrammed systems.
The registers are fully edge-triggered. The state of each D input, one set-up time before the LOW-to-HIGH clock transition is transferred to the corresponding flip-flop's Q output.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$	TYPICAL	UNIT
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tpHL }} \end{aligned}$	Propagation delay nCP to nQx	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 2.3 \\ & 1.9 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{C C}$	4	pF
Cout	Output capacitance	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}} ; 3$-State	6	pF
Iccz	Quiescent supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	500	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CCL}}$		Outputs low; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	9	mA

ORDERING INFORMATION
$T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Type number	Package		
	Name	Description	Version
74ABT16823ADL	SSOP56	plastic shrink small outline package; 56 leads; body width 7.5 mm	SOT371-1
74ABT16823ADGG	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	
2,27	$1 \overline{O E}, 2 \overline{O E}$	FUNCTION
$54,52,51,49,48,47,45,44,43$	Output enable input (active-LOW)	
$42,41,40,38,37,36,34,33,31$	2D0-2D8	Data inputs
$3,5,6,8,9,10,12,13,14$	1Q0-1Q8	Data outputs
$15,16,17,19,20,21,23,24,26$	2Q0-2Q8	Clock pulse input (active rising edge)
56,29	$1 \mathrm{CP}, 2 \mathrm{CP}$	Clock enable input (active-LOW)
55,30	$1 \overline{\mathrm{CE}}, 2 \overline{\mathrm{CE}}$	Master reset input (active-LOW)
1,28	$1 \mathrm{MR}, 2 \overline{\mathrm{MR}}$	Ground (0 V)
$4,11,18,25,32,39,46,53$	GND	Positive supply voltage
$7,22,35,50$	$\mathrm{~V}_{\mathrm{CC}}$	

18-bit bus-interface D-type flip-flop with reset and enable (3-State)

PIN CONFIGURATION

LOGIC SYMBOL (IEEE/IEC)

18-bit bus-interface D-type flip-flop

 with reset and enable (3-State)
LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUTS	OPERATING MODE	
$\mathrm{n} \overline{O E}$	nMR	nCE	nCP			
L	L	X	X	X	L	Clear
L	H	L	\uparrow	h	H	
L	H	L	\uparrow	I	L	
L	H	H	\uparrow	X	NC	Hold
H	X	X	X	X	Z	High impedance

[^0]$\mathrm{h}=$ High voltage level one set-up time prior to the LOW-to-HIGH clock transition
$\mathrm{L}=$ Low voltage level
I = Low voltage level one set-up time prior to the LOW-to-HIGH clock transition
NC= No change
X = Don't care
Z = High impedance "off" state
$\uparrow=$ LOW-to-HIGH clock transition
$\uparrow=$ Not a LOW-to-HIGH clock transition

18-bit bus-interface D-type flip-flop with reset and enable (3-State)

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +7.0	V
I_{K}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-18	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage ${ }^{3}$		-1.2 to +7.0	V
I_{OK}	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	output in Off or HIGH state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	DC output current	output in LOW state	128	mA
		output in HIGH state	-64	
	Storage temperature range		-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		MIN	MAX	
V_{CC}	DC supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	HIGH-level input voltage	2.0	-	V
V_{IL}	LOW-level input voltage	-	0.8	V
I_{OH}	HIGH-level output current	-	-32	mA
I_{OL}	LOW-level output current	-	64	mA
$\Delta \mathrm{~A} / \Delta \mathrm{V}$	Input transition rise or fall rate	0	10	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{T}_{\mathrm{amb}}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

18-bit bus-interface D-type flip-flop with reset and enable (3-State)

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to } \\ \\ \\ \hline 85^{\circ} \mathrm{C} \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{K}}=-18 \mathrm{~mA}$	-	-0.9	-1.2	-	-1.2	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}	2.5	2.9	-	2.5	-	V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}	3.0	3.4	-	3.0	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	2.0	2.4	-	2.0	-	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	-	0.42	0.55	-	0.55	V
$V_{\text {RST }}$	Power-up output LOW voltage ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	-	0.13	0.55	-	0.55	V
1	Input leakage curent	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	± 0.01	± 1	-	± 1	$\mu \mathrm{A}$
IoFF	Power-off leakage current	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}$ or $\mathrm{V}_{1} \leq 4.5 \mathrm{~V}$	-	± 5.0	± 100	-	± 100	$\mu \mathrm{A}$
IPU/PD	Power-up/down 3-State output current ${ }^{4}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OE}}=\text { Don't care } \end{aligned}$	-	± 5.0	± 50	-	± 50	$\mu \mathrm{A}$
lozh	3-State output HIGH current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\text {IH }}$	-	1.0	10	-	10	$\mu \mathrm{A}$
lozl	3-State output LOW current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	-	-1.0	-10	-	-10	$\mu \mathrm{A}$
Icex	Output HIGH leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	-	50	50	-	50	$\mu \mathrm{A}$
Io	Output current ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-80	-180	-50	-180	mA
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs HIGH; $V_{1}=G N D$ or $V_{C C}$	-	0.5	1	-	1	mA
$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; Outputs LOW; }$ $V_{1}=G N D \text { or } V_{C C}$	-	9.0	19	-	19	mA
I CCz		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs 3-State; $V_{1}=G N D$ or $V_{C C}$	-	0.5	1	-	1	mA
$\Delta^{\text {l }}$ C	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at V_{CC} or GND	-	0.2	1	-	1	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
4. This parameter is valid for any V_{Cc} between 0 V and 2.1 V with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 10 \%$ a transition time of up to $100 \mu \mathrm{sec}$ is permitted.

18-bit bus-interface D-type flip-flop with reset and enable (3-State)

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	1	140	190	-	140		MHz
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation delay nCP to nQx	1	$\begin{aligned} & 1.4 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.3 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.7 \\ & 2.9 \\ & \hline \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation delay $n \overline{M R}$ to $n Q x$	2	2.0	3.3	4.3	2.0	5.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output enable time to HIGH and LOW level	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 2.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.4 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output disable time from HIGH and LOW level	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.7 \\ & 3.4 \end{aligned}$	ns

AC SET-UP REQUIREMENTS

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$	
			MIN	TYP	MIN	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Set-up time, HIGH or LOW } \\ \text { nDx to } \mathrm{nCP} \end{array} \\ \hline \end{array}$	3	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 0.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 1.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, HIGH or LOW nDx to nCP	3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & -0.9 \\ & -1.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	nCP pulse width HIGH or LOW	1	$\begin{aligned} & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time, HIGH or LOW nCE to nCP	3	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{th}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}(\mathrm{~L}) \end{aligned}$	Hold time, HIGH or LOW nCE to nCP	3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & -0.8 \\ & -0.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	nMR pulse width, LOW	2	3.0	1.7	3.0	ns
$\mathrm{t}_{\text {rec }}$	Recovery time nMR to nCP	2	2.5	1.0	2.5	ns

18-bit bus-interface D-type flip-flop

 with reset and enable (3-State)
AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

Waveform 4. 3-State Output Enable Time to HIGH Level and Output Disable Time from HIGH Level

Waveform 5. 3-State Output Enable Time to LOW Level and Output Disable Time from LOW Level

Waveform 2. Master Reset Pulse WIdth, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Waveform 3. Data Set-up and Hold Times

18-bit bus-interface D-type flip-flop

 with reset and enable (3-State)
TEST CIRCUIT AND WAVEFORM

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$
mm	2.8	0.4	2.35	0.25	0.3	0.22	18.55	7.6	0.635	10.4	1.4	1.0	1.2	0.25	0.18	0.1	0.85
	0.20	0.2	0.13	18.30	7.4	0.635	10.1	1.4	0.6	1.0	0.40	0^{0}					

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT371-1		MO-118		\square -	$\begin{aligned} & 9-12-27 \\ & 03-02-18 \end{aligned}$

18-bit bus-interface D-type flip-flop

 with reset and enable (3-State)

DIMENSIONS (mm are the original dimensions).

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	Z	θ
mm	1.2	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.85 \end{aligned}$	0.25	0.28	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.9 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.0 \end{aligned}$	0.5	$\begin{aligned} & 8.3 \\ & 7.9 \end{aligned}$	1	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.35 \end{aligned}$	0.25	0.08	0.1	0.5 0.1	8° 0°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT364-1		MO-153		- ¢	$\begin{aligned} & -9-12-27 \\ & 03-02-19 \end{aligned}$

18-bit bus-interface D-type flip-flop

 with reset and enable (3-State)
REVISION HISTORY

Rev	Date	Description
-3	20040202	Product data (9397 750 12833); 853-1791 ECN 01-A15432 of 27 January 2004. Replaces data sheet 74ABT_H16823A_2 of 1998 February 27 (9397 750 03502). Modifications: \bullet Delete all references to 74ABTH16823A (product discontinued).
$_^{2}$	19980227	Product specification (9397 750 03502); ECN 853-1791 19025 of 27 February 1998. Supersedes data of 1995 Sep 28.

Data sheet status

Level	Data sheet status [1]	Product status ${ }^{\text {[2] [3] }}$	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes —Philips Semiconductors reserves the right to make changes in the products-including circuits, standard cells, and/or software-described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

© Koninklijke Philips Electronics N.V. 2004
For additional information please visit
http://www.semiconductors.philips.com.
Fax: +31 $\mathbf{4 0} 27 \mathbf{2 4 8 2 5}$
For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.
Document order number:
Date of release: 02-04
939775012833

Let's make things better.

PHILIPS

[^0]: H = High voltage level

