

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{9}$	Data Inputs
CLK	Clock Input
$\overline{\mathrm{OE}}$	Output Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{9}$	3-STATE Latch Outputs

Function Table

Inputs			Internal	Outputs	Function
$\overline{\mathrm{OE}}$	CLK	D	Q	O_{n}	
H	H	L	NC	Z	Hold
H	H	H	NC	Z	Hold
H	\sim	L	L	Z	Load
H	\sim	H	H	Z	Load
L	\sim	L	L	L	Data Available
L	\sim	H	H	H	Data Available
L	H	L	NC	NC	No Change in Data
L	H	H	NC	NC	No Change in Data

$\mathrm{H}=$ HIGH Voltage Leve
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impendance
= LOW-to-HIGH Transition
NC = No Change

Functional Description

The LCX821 consists of ten edge-triggered flip-flops with individual D-type inputs with 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The ten flip-flops will store the state of their individual D inputs that meet the setup and hold time
requirements on the LOW-to-HIGH Clock (CLK) transition. With the Output Enable ($\overline{\mathrm{OE})}$ LOW, the contents of the ten flip-flops are available at the outputs. When OE is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-flops.

Logic Diagram

Absolute Maximum Ratings（Note 2）				
Symbol	Parameter	Value	Conditions	Units
V_{CC}	Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to +7.0	Output in 3－STATE	
		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	Output in HIGH or LOW State（Note 3）	V
I_{K}	DC Input Diode Current	-50	$\mathrm{~V}_{1}<\mathrm{GND}$	mA
$I_{\text {OK }}$	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	
		+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I_{O}	DC Output Source／Sink Current	± 50		mA
$I_{\text {CC }}$	DC Supply Current per Supply Pin	± 100		mA
$I_{\text {GND }}$	DC Ground Current per Ground Pin	± 100		mA
$T_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions（Note 4）

Symbol	Parameter		Min	Max	Units
$\mathrm{V}_{\text {c }}$	Supply Voltage	Operating Data Retention	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage		0	5.5	V
V_{O}	Output Voltage	$\begin{array}{r} \text { HIGH or LOW State } \\ \text { 3-STATE } \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
$\overline{\mathrm{IOH}^{\prime} / \mathrm{l}_{\mathrm{OL}}}$	Output Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=2.3 \mathrm{~V}-2.7 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 24 \\ \pm 12 \\ \pm 8 \end{gathered}$	mA
T_{A}	Free－Air Operating Temperature		－40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate， $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0	10	ns／V

Note 2：The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed．The device should not be operated at these limits．The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings．The＂Recom－ mended Operating Conditions＂table will define the conditions for actual device operation．
Note 3： I_{O} Absolute Maximum Rating must be observed．
Note 4：Unused inputs must be held HIGH or LOW．They may not float．

DC Electrical Characteristics

Symbol	Parameter	Conditions	$V_{c c}$ （V）	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
$\overline{\mathrm{V}} \mathrm{IH}$	HIGH Level Input Voltage		2．3－2．7	1.7		V
			2．7－3．6	2.0		
V_{IL}	LOW Level Input Voltage		2．3－2．7		0.7	V
			2．7－3．6		0.8	
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2．3－3．6	$\mathrm{V}_{\mathrm{CC}}-0.2$		v
		$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.3	1.8		
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		
		$\mathrm{IOH}^{\prime}=-18 \mathrm{~mA}$	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2．3－3．6		0.2	v
		$\mathrm{I}_{\text {OL }}=8 \mathrm{~mA}$	2.3		0.6	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2．3－3．6		± 5.0	$\mu \mathrm{A}$
l_{OZ}	3－STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2．3－3．6		± 5.0	$\mu \mathrm{A}$
IofF	Power－Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.3-3.6		10	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$ (Note 5)	2.3-3.6		± 10	
$\triangle{ }^{\text {a }}$	Increase in I_{CC} per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.3-3.6		500	$\mu \mathrm{A}$

Note 5: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	150						MHz
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay CLK to O_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 8.4 \end{aligned}$	ns
$t_{\text {PZL }}$ $t_{\text {PZH }}$	Output Enable Time	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 9.8 \end{aligned}$	ns
$t_{\text {PLZ }}$ $t_{\text {PHZ }}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.8 \\ & 7.8 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{OSHL}}$ t_{OLLH}	Output to Output Skew (Note 6)		$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$					ns
t_{s}	Setup Time, D_{n} to CLK	2.5		2.5		4.0		ns
${ }_{\text {t }}$	Hold Time, D_{n} to CLK	1.5		1.5		2.0		ns
t_{W}	CLK Pulse Width	3.3		3.3		4.0		ns

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
			(V)	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V_{OL}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & -0.8 \\ & -0.6 \end{aligned}$	V

Capacitance

Symbol	Conditions	Typical	Units	
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
C_{O}	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	20	pF

AC LOADING and WAVEFORMS Generic for LCx Family

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and $\mathrm{t}_{\mathrm{rec}}$ Waveforms
 Disable Times for Logic

FIGURE 2. Waveforms
(Input Characteristics; $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$)

Symbol	$\mathbf{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 7} \mathrm{V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

