2.5V QUAD/DUAL TeraSync ${ }^{\text {TM }}$ DDR/SDR FIFO
x10 QUAD FIFO or x10/x20 DUALFIFO CONFIGURATIONS
$32,768 \times 10 \times 4 / 16,384 \times 20 \times 2$
IDT72T54242
$65,536 \times 10 \times 4 / 32,768 \times 20 \times 2$ IDT72T54252
$131,072 \times 10 \times 4 / 65,536 \times 20 \times 2$
IDT72T54262

FEATURES

- Choose from among the following memory organizations: | IDT72T54242 |
| :--- |
| IDT72T54252 |
| I |
| IDT72T54262 |
| - | 135,$7636 \times 10 \times 10 \times 4 / 32,768 \times 10 \times 2 \times 536 \times 10 \times 2$
- User Selectable Quad / Dual Mode - Choose between two or four independent FIFOs
- Quad Mode offers
- Eight discrete clock domain, (four write clocks \& four read clocks)
- Four separate write ports, write data to four independent FIFOs
- 10-bit wide write ports
- Four separate read ports, read data from any of four independent FIFOs
- Independent set of status flags and control signals for each FIFO
- Dual Mode offers
- Four discrete clock domain, (two write clocks \& two read clocks)
- Two separate write ports, write data to two independent FIFOs
- 10-bit/20-bit wide write ports
- Two separate read ports, read data from any of two independent FIFOs
- Independent set of status flags and control signals for each FIFO
- Bus-Matching on read and write port x10/x20
- Maximum depth of each FIFO is the same as in Quad Mode
- Up to 200 MHz operating frequency or 2Gbps throughput in SDR mode
- Up to 100 MHz operating frequency or 2Gbps throughput in DDR mode
- Double Data Rate, DDR is selectable, providing up to 400Mbps bandwidth per data pin
- User selectable Single or Double Data Rate modes on both the write port(s) and read port(s)
- All I/Os are LVTTL/ HSTL/ eHSTL user selectable
- 3.3V tolerant inputs in LVTTL mode
- ERCLK and EREN Echo outputs on all read ports
- Write enable $\overline{W E N}$ and Chip Select $\overline{W C S}$ input for each write port
- Read enable $\overline{\operatorname{REN}}$ and Chip Select $\overline{\mathrm{RCS}}$ input for each read port
- User Selectable IDT Standard mode (using EF and FF) or FWFT mode (using $\overline{\mathrm{R}}$ and $\overline{\mathrm{OR}}$)
- Programmable Almost Empty and Almost Full flags per FIFO
- Dedicated Serial Port for flag offset programming
- Power Down pin minimizes power consumption
- 2.5V Supply Voltage
- Available in a 324 -pin PBGA, 1 mm pitch, $19 \mathrm{~mm} \times 19 \mathrm{~mm}$
- IEEE 1149.1 compliant JTAG port provides boundary scan function
- Low Power, High Performance CMOS technology
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Green parts available, see ordering information

FUNCTIONAL BLOCK DIAGRAMS

FUNCTIONAL BLOCK DIAGRAMS (CONTINUED)

Features 1
Description 4
Pin Configuration 6
Pin Descriptions 7
Device Characteristics 11
DC Electrical Characteristics 12
AC Electrical Characteristics 14
AC Test Conditions 15
Functional Description 17
Signal Descriptions 23
JTAG Timing Specifications 29
List of Tables
Table 1 -Device Configuration 17
Table 2-Default Programmable Flag Offsets 17
Table 3-Status Flags for IDT Standard mode 20
Table 4 - Status Flags for FWFT mode 20
Table 5 - I/O Voltage Level Associations 21
Table 6 - Tskew Measurement 27
List of Figures
Figure 1. Quad/Dual Block Diagram 5
Figure 2a. AC Test Load 15
Figure 2b. Lumped Capacitive Load, Typical Derating 15
Figure 3. Programmable Flag Offset Programming Methods 18
Figure 4. Offset Registers Serial Bit Sequence 19
Figure 5. Bus-Matching in Dual mode 22
Figure 6. Echo Read Clock and Data Output Relationship 27
Figure 7. Standard JTAG Timing 28
Figure 8. JTAG Architecture 29
Figure 9. TAP Controller State Diagram 30
Figure 10. Master Reset Timing 33
Figure 11. Partial Reset Timing 34
Figure 12. Write Cycle and Full Flag Timing (Quad mode, IDT Standard mode, SDR to SDR) 35
Figure 13. Write Cycle and Full Flag Timing (Quad mode, IDT Standard mode, DDR to DDR) 36
Figure 14. Write Cycle and Full Flag Timing (Dual mode, IDT Standard mode, DDR to SDR, x10 In to x20 Out) 37
Figure 15. Write Cycle and Full Flag (Dual mode, IDT Standard mode, SDR to DDR, x20 In to x10 Out) 38
Figure 16. Write Cycle and Output Ready Timing (Quad mode, FWFT mode, SDR to SDR) 39
Figure 17. Write Cycle and Output Ready Timing (Quad mode, FWFT mode, DDR to DDR) 40
Figure 18. Read Cycle, Output Enable and Empty Flag Timing (Quad mode, IDT Standard mode, SDR to SDR) 41
Figure 19. Read Cycle, Output Enable and Empty Flag Timing (Quad mode, IDT Standard mode, DDR to DDR) 42
Figure 20. Read Cycle and Empty Flag Timing (Dual mode, IDT Standard mode, DDR to SDR, x20 In to x10 Out) 43
Figure 21. Read Cycle and Empty Flag Timing (Dual mode, IDT Standard mode, SDR to DDR, x10 In to x20 Out) 44
Figure 22. Read Timing and Output Ready Flag (Quad mode, FWFT mode, SDR to SDR) 45
Figure 23. Read Timing and Output Ready Timing (Quad mode, FWFT mode, DDR to DDR) 46
Figure 24. Read Cycle and Read Chip Select (Quad mode, IDT Standard mode, SDR to SDR) 47
Figure 25. Read Cycle and Read Chip Select Timing (Quad mode, FWFT mode, SDR to SDR) 48
Figure 26. Echo Read Clock and Read Enable Operation (Quad mode, IDT Standard mode, DDR to DDR) 49
Figure 27. Echo RCLK and Echo Read Enable Operation (Quad mode, FWFT mode, SDR to SDR) 50
Figure 28. Echo Read Clock and Read Enable Operation (Quad mode, IDT Standard mode, SDR to SDR) 51
Figure 29. Loading of Programmable Flag Registers (IDT Standard and FWFT modes) 52
Figure 30. Reading of Programmable Flag Registers (IDT Standard and FWFT modes) 52
Figure 32. Synchronous Programmable Almost-Empty Flag Timing (Quad mode, IDT Standard and FWFT mode, SDR to SDR) 53
Figure 31. Synchronous Programmable Almost-Full Flag Timing (Quad mode, IDT Standard and FWFT mode, SDR to SDR) 53
Figure 33. Asynchronous Programmable Almost-Full Flag Timing (Quad mode, IDT Standard and FWFT mode, SDR to SDR) 54
Figure 34. Asynchronous Programmable Almost-Empty Flag Timing (Quad mode, IDT Standard and FWFT mode, SDR to SDR) 54
Figure 35. Power Down Operation 55

DESCRIPTION

The IDT72T54242/72T54252/72T54262 Quad/Dual TeraSync FIFO devices are ideal for many applications where data stream convergence and parallel buffering of multiple data paths are required. These applications may include communication systems such as data bandwidth aggregation, data acquisition systems and medical equipment, etc. The Quad/Dual FIFO allows the userto selecteithertwo orfour individual internalFIFOs for operation. Each internal FIFO has its own discrete read and write clock, independent read and write enables, and separate status flags. The density of each FIFO is fixed.

If Quadmode is selected, there will be a total of eightclock domains, four read and four write clocks. Data can be written into any of the four write ports totally independent of any other port, and can be read out of any of the four read ports corresponding to their respective write port. Each port has its own control enables and status flags and is 10 bits wide. The device functions as four separate 10-bit wide FIFOs.

If Dual mode is selected, there will be a total of four clock domains, two read and two write clocks. Data can be written into any of the two write ports totally independent of any other port, and can be read out of any of the two read ports corresponding to their respective write port. Each port has its own control enables and status flags. All input and output ports have bus-matching capabilities of x 10 or x 20 bits wide.

As typical with mostIDTFIFOs, two types of datatransfer are available, IDT Standard mode and First Word Fall Through (FWFT) mode. This affects the deviceoperationandalsothe flagoutputs. Thedevice provideseightflagoutputs per inputand outputport. A dedicated Serial Clockis usedfor programming the flag offsets. Thisclockis also usedfor reading the offset values. The serial read and write operations are performed via the SCLK, FWFT/SI, $\overline{\text { SWEN }}, \overline{\text { SREN }}$, and SDO pins. The flag offsets can also be programmed using the JTAG port. If this option is selected, the SCLK, SWEN, and $\overline{\text { SREN }}$ pins must be disabled.
The Quad/Dual device offers a maximumthroughputof2Gbps perport, with selectableSDR orDDR datatransfer modes for the inputs and outputs. InSDR
mode, the input clock can operate up to 200MHz. Data will transition/latch on the rising edge of the clock. InDDR mode, the inputclock can operate up to 100 MHz , with datatransitioning/latched on both rising andfallingedges of the clock. The advantage of DDR is that itcan achieve the same throughputas SDR with only half the number of bits, assuming the frequency is constant. For example, a 4Gbps throughput in SDR is $100 \mathrm{MHz} \times 40$ bits. In DDR mode, it is 100 MHz x20 bits, because two bits transition per clock cycle.
All Read ports providethe user with a dedicated Echo Read Enable, EREN and Echo Read Clock, ERCLK output. These outputs aid in high speed applications where synchronization of the input clock and data of receiving device is critical. Otherwise known as "Source Synchronous Clocking," the echo outputs provide tighter synchronization of the data transmitted from the FIFO and the read clock interfacing the FIFO outputs.
A Master Reset input is provided and all setup and configuration pins are latched with respect to a Master Reset pulse. For example, the mode of operation, bus-matching, and data rate are selected atMaster Reset. A Partial Reset is provided for each internal FIFO. When a Partial Reset is performed on aFIFO the read and write pointers of that FIFO are reset to the firstmemory location. The flag offset values, timing modes, and initial configurations are retained.
The Quad/Dual device has the capability of operating its I/O at either 2.5 V LVTTL, 1.5V HSTL or 1.8V eHSTL levels. A Voltage Reference, Vref input is providedfor HSTL andeHSTL interfaces. The type of I/O is selected via the IOSELpin. Thecore supply voltage of the device, Vccisalways 2.5 V , however theoutputpins have a separate supply, VDDQwhich canbe2.5V, 1.8V, or 1.5V. The inputs of this device are 3.3 V tolerantwhen VDDQ is setto2.5V. The device also offers significant power savings, most notably achieved by the presence of a Power Down input, $\overline{\text { PD }}$.
A JTAG test port is provided. The Quad/Dual device has a fully functional Boundary Scanfeature, compliantwith IEEE 1149.1 Standard TestAccessPort and Boundary Scan Architecture.

NOTES:

1. This block diagram only shows the architecture for FIFO 0 . There are a total of four FIFOs inside this device all with the identical architecture.
2. *Denotes dedicated signal for each internal FIFO inside the device.

Figure 1. Quad/Dual Block Diagram

PIN CONFIGURATION

NOTE:

1. $\mathrm{NC}=$ No Connection.

PIN DESCRIPTIONS

Symbol	Name	I/O Type	Description
D[39:0]	Data InputBus	HSTL-LVTTL INPUT	Thesearethe datainputsforthedevice.Dataiswritten intothepartviatheseinputs using the respective write port clocks and enables. In Quad mode, these inputs provide four separate busses to the four separate FIFOs. D[9:0] is FIFO[0], D[19:10] is FIFO[1], D[29:20] is FIFO[2], D[39:30] is FIFO[3]. InDual mode, these inputs providetwo separatebusses tothe two separateFIFOs. D[19:0] is FIFO[0], $\mathrm{D}[39: 20]$ is FIFO[2]. Any unused inputs should be tied to GND.
EF0/1/2/3, $\overline{\mathrm{OR}} 0 / 1 / 2 / 3$	Empty Flag 0/1/2/3 or Output Ready Flags 0/1/2/3	HSTL-LVTTL OUTPUT ${ }^{(1)}$	These are the Empty Flags (IDT Standardmode) or Output Ready Flag (FWFT mode) corresponding to each of the four FIFOs on the read port. If Dual mode is selected $\overline{\mathrm{EF}} 1 / \overline{\mathrm{OR}} 1$ and $\overline{\mathrm{EF}} 3 / \overline{\mathrm{OR}} 3$ are not used and can be left floating.
ERCLK0/1/2/3	Echo Read Clock 0/1/2/3	HSTL-LVTTL OUTPUT ${ }^{(1)}$	These are the echo clock outputs corresponding to each of the four FIFOs on the read port. The echo read clock is guaranteed to transition after the slowest output data switching. If Dual mode is selected ERCLK1 and ERCLK3 are not used and can be left floating
EREN0/1/2/3	Echo Read Enable 0/1/2/3	HSTL-LVTTL OUTPUT ${ }^{(1)}$	These are the echo read enable outputs corresponding to each of the four FIFOs on the read port. The echo read enable is synchronous to the RCLK input and is active when a read operation has occurred and a new word has been placed ontothe data output bus. If Dual mode is selected EREN1 and EREN 3 are not used and can be left floating.
FF0/1/2/3, $\overline{\mathrm{R}} 0 / 1 / 2 / 3$	Full Flags 0/1/2/3 or Input Ready Flags 0/1/2/3	HSTL-LVTTL OUTPUT ${ }^{(1)}$	These are the Full Flags (IDTStandard mode) and Input Ready Flags (FWFT mode) corresponding to each of the four FIFOs on the read port. If Dual mode is selected $\overline{F F} 1 / \bar{R} 1$ and $\overline{F F} 3 / / \bar{R} 3$ are not used and can be left floating.
$\begin{aligned} & \text { FSEL } \\ & {[1: 0]} \end{aligned}$	Flag Select	$\begin{gathered} \text { HSTL-LVTTL } \\ \text { INPUT } \end{gathered}$	Flagselectdefaultoffsetpins. During master reset, the FSELpins are used to selectone offour default $\overline{\mathrm{PAE}}$ and $\overline{\text { PAF }}$ offsets. Boththe $\overline{\text { PAE and the } \overline{\text { PAF }} \text { offsets are programmed to the same value. Values }}$ are: $00=7 ; 01=63 ; 10=127 ; 11=1023$. The offset value selected is supplied to all internal FIFOs.
FWFT/SI	FirstWord Fall Through/ Serial Input	$\begin{gathered} \text { HSTL-LVTTL } \\ \text { INPUT } \end{gathered}$	During Master Reset, FWFT=1 selects FirstWord Fall Through mode, FWFT=0 selects IDT Standard mode. AfterMaster Resetthis pinis used for the Serial Datainputfor the programming of the $\overline{\text { PAE }}$ and $\overline{\text { PAF flag's offset registers. }}$
IOSEL	I/OSelect	$\mathrm{CMOS}^{(2)}$ INPUT	This input determines whether the inputs will operate in LVTTL or HSTL/eHSTL mode. IfIOSEL pin is HIGH, then all inputs and outputs that are designated "LVTTL or HSTL" in this section will be setto HSTL. IfIOSEL is LOW then LVTTL is selected. This signal must be tied to eitherVcc or GND for proper operation.
W	InputWidth	$\mathrm{CMOS}^{(2)}$ INPUT	If Dual mode is selected , this pin is used during master reset to select the input word width bus size for the device. $0=x 10 ; 1=x 20$. If Quad mode is selected the input word width will be $x 10$ regardless of IW. IW must be tied to Vcc or GND and cannot be left floating.
MD	Mode	CMOS ${ }^{(2)}$ INPUT	This mode selection pin is used during master reset to select either Quad or Dual mode operation. AHIGH on this pin selects Quad mode, a LOW selects Dual mode.
$\overline{\mathrm{MRS}}$	MasterReset	HSTL-LVTTL INPUT	This input provides afull device reset. All set-up pins are latched based on a master reset operation. Read and write pointers will be reset to the firstlocation memory. All flag offsets are cleared and reset to default values determined by FSEL[1:0].
$\overline{\mathrm{OE}}$ 0/1/2/3	OutputEnable $0 / 1 / 2 / 3$	HSTL-LVTTL INPUT	These are the output enables correspondingto each individual FIFO on the read port. All data outputs will be placed into High Impedance ifthis pin is High. These inputs are asynchronous. If Dual mode is selected $\overline{\mathrm{OE}} 1$ and $\overline{\mathrm{OE}} 3$ are not used and should be tied to Vcc.
OW	OutputWidth	$\mathrm{CMOS}^{(2)}$ INPUT	If Dual mode is selected, this pin is used during master reset to select the output word width bus size for the device. $0=x 10 ; 1=x 20$. If Quad mode is selected the output word width will bex10 regardless of OW. OW must be tied to Vcc or GND and cannot be left floating.
$\overline{\mathrm{PAE}} 0 / 1 / 2 / 3$	Programmable Almost-Empty Flags 0/1/2/3	HSTL-LVTTL OUTPUT ${ }^{(1)}$	These are the programmable almostempty flags that can be used as an early indicator for the empty boundary of each FIFO. The $\overline{\text { PAE }}$ flags can be set to one of four default offsets determined by the state of FSEL0 and FSEL1 during master reset. The $\overline{\text { PAE }}$ offset value can also be written and read from serially by eitherthe JTAG portorthe serial programming pins (SCLK, SI, SDO, $\overline{\text { SWEN }}, \overline{\text { SREN }}$). This flag can operate in synchronous or asynchronous mode depending on the sate of the PFM pin during master reset. If Dual mode is selected $\overline{\mathrm{PAE}} 1$ and $\overline{\mathrm{PAE}} 3$ are not used and can be left floating.
$\overline{\text { PAF }} / 1 / 2 / 3$	Programmable Almost-Full Flags 0/1/2/3	HSTL-LVTTL OUTPUT ${ }^{(1)}$	These are the programmable almost full flags that can be used as an early indicator for the full boundary of each FIFO. The $\overline{\text { PAF flags can be setto one of four default offsets determined by the }}$ state of FSELO and FSEL1 during master reset. The $\overline{\text { PAF }}$ offset value can also be written and read from serially by eitherthe JTAG portorthe serial programming pins (SCLK, SI, SDO, $\overline{\text { SWEN, }}$, $\overline{\text { SREN }}$).

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/O Type	Description
PAF0/1/2/3 (Continued)	Programmable Almost-Full Flags0-3	HSTL-LVTTL OUTPUT ${ }^{(1)}$	This flag can operate in synchronous or asynchronous mode depending on the sate of the PFM pin during master reset. If Dual mode is selected $\overline{\mathrm{PAF}} 1$ and $\overline{\mathrm{PAF}} 3$ are not used and can be left floating.
$\overline{\text { PD }}$	Power Down	HSTL-LVTTL INPUT	This input provides considerable power saving in HSTLJHSTL mode. If this pin is low, the input leveltranslators for all the data inputpins, clocks and non-essential control pins are turned off. When $\overline{\mathrm{PD}}$ is brought high, power-up sequence timing will have to be adhered to before the inputs will be recognized. It is essential that the user respect these conditions when powering down the partand powering up the part, so as to not produce runt pulses or glitches on the clocks ifthe clocks are free running. $\overline{P D}$ does not provide any power consumption savings when the inputs are configured for LVTTL.
PFM	Programmable Flag Mode	CMOS ${ }^{(2)}$ INPUT	During master reset, a HIGH on PFM selects synchronous $\overline{\mathrm{AEE}} / \overline{\mathrm{PAF}}$ flag timing, a Low during
$\overline{\mathrm{PRS}} 0 / 1 / 2 / 3$	Partial Reset	HSTL-LVTTL INPUT	These are the partial reset inputs for each internal FIFO. The read, write, flag pointers, and output registers will all be setto zero when partial reset is activated. During partial reset, the existing mode (IDT or FWFT), input/output bus width and rate mode, and the programmable flag settings are all retained. If Dual mode is selected, $\overline{\operatorname{PRS} 1} 1$ and $\overline{\operatorname{PRS} 3} 3$ are not used and should be tied to Vcc.
Q[39:0]	DataOutputBus	HSTL-LVTTL OUTPUT(${ }^{(1)}$	These are the Data Outputs for the device. Data is read from the partvia these outputs using the respective read portclocks and enables. In Quad mode, these outputs provide fourseparate busses from the four separate FIFO's. Q[9:0] is FIFO[0], Q[19:10] is FIFO[1], Q[29:20] is FIFO[2], Q[39:30] is FIFO[3]. In Dual mode these outputs provide two separate busses from the two separate FIFO's. Q[19:0] is FIFO[0] and Q[39:20] is FIFO[2].
RCLK0/1/2/3	Read Clock 0/1/2/3	HSTL-LVTTL INPUT	These are the clock inputs corresponding to each of the four FIFOs on the read port. If Dual mode is selected then RCLK1 and RCLK3 are not used and should be tied to GND. In SDR mode data will beaccessed on the rising edge of RCLK when $\overline{R E N}$ and $\overline{\mathrm{RCS}}$ are LOW at the rising edge of RCLK. In DDR mode data will be accessed on both rising and falling edge of RCLK when REN is LOW.
$\overline{\mathrm{RCS}} 0 / 1 / 2 / 3$	ReadChip Select	HSTL-LVTTL INPUT	These are the read chip select inputs corresponding to each of the four FIFOs on the read port. This pin provides synchronous control of the read port and highimpedance control of the outputdata bus. $\overline{\text { RCS }}$ is only sampled on the rising edge of RCLK. During master or partial resetthis inputis a don't care, if $\overline{O E}$ is LOW the datainputs will be in Low-Impedance regardless of the state of $\overline{\mathrm{RCS}}$. If Dual mode is selected then $\overline{\mathrm{RCS}} 1$ and $\overline{\mathrm{RCS}} 3$ are not used and should be tied to Vcc.
REN0/1/2/3	Read Enable	HSTL-LVTTL INPUT	These are the read enable inputs corresponding to each of the four FIFOs on the read port. InSDR, when this signal (and $\overline{\mathrm{RCS}}$) are LOW data will be sent from the FIFO memory to the output bus on every rising edge of RCLK. In DDR mode, data will be accessed on both rising and falling edges of RCLK. Note in DDR mode the $\overline{R E N}$ and $\overline{\text { RCS }}$ are only sampled on the rising edge of RCLK. New data will always begin from the rising edge not the falling edge of RCLK. If Dual mode is selected then $\overline{R E N} 1$ and $\overline{\mathrm{REN}} 3$ are not used and should be tied to VCc.
RDDR	Read Port DDR	CMOS ${ }^{(2)}$ INPUT	During master reset, this pin selects the outputporttooperate in DDR orSDRformat. IfRDDRisHIGH, then a word is read on the rising andfalling edge of the appropriate RCLK0, 1,2 and 3 input. IfRDDR is LOW, then a word is read only on the rising edge of the appropriate RCLK0, 1, 2 and 3 inputs.
SCLK	Serial Clock	HSTL-LVTTL INPUT	Serial clock for writing and reading the $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ offset registers. On the rising edge of each SCLK, when SWEN is low, one bitofdatais shifted intothe PAE and PAF registers. Onthe risingedge of each SCLK, when SREN is low, one bit of data is shifted out of the PAE and PAF offsetregisters. The reading of the $\overline{\text { PAE and }}$ PAF registers is non-destructive. If programming of the PAE/PAF offset registers are done via the JTAG port, this input must be tied to VCC.
SDO	Serial Data	LVTTL OUTPUT ${ }^{(1)}$	This outputis used to read data from the programmable flag offsetregisters. Itis used in conjunction with the $\overline{\text { SREN }}$ and SCLK signals.
$\overline{\text { SREN }}$	Serial Read Enable	HSTL-LVTTL INPUT	When $\overline{\text { SREN }}$ is brought LOW before the rising edge of SCLK, the contents of the $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$ offsetregisters are copied to a serial shift register. While SREN is maintained LOW, on each rising edge of SCLK, one bit of data is shifted out of this serial shiftregister through the SDO outputpin. If programming ofthe $\overline{\text { PAE }} / \overline{\text { PAF offsetregisters is done viathe JTAG port, this inputmustbetied HIGH. }}$
SWEN	Serial Write Enable	HSTL-LVTTL INPUT	On each rising edge of SCLK when $\overline{\text { SWEN }}$ is LOW, data from the FWFT/SI pin is serially loaded into the $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ registers. If programming of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offset registers is done via the JTAG port, this input mustbetied HIGH.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/O Type	Description
TCK ${ }^{(3)}$	JTAG Clock	HSTL-LVTTL INPUT	Clockinputfor JTAG function. One offourterminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to TCK. Data from TMS and TDI are sampled on the rising edge of TCK and outputs change on the falling edge of TCK. If the JTAG function is not used this signal needs to be tied to GND.
TDI ${ }^{(3)}$	JTAG TestData Input	HSTL-LVTTL INPUT	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded via the TDI on the rising edge of TCK to either the Instruction Register, ID Register and Bypass Register. An internal pull-up resistor forces TDI HIGH if left unconnected.
TDO ${ }^{(3)}$	JTAG TestData Output	HSTL-LVTTL OUTPUT	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded output via the TDO on the falling edge of TCK from either the Instruction Register, ID Register and Bypass Register. This outputis highimpedance except when shifting, while in SHIFT-DR and SHIFT-IR controller states.
TMS ${ }^{(3)}$	JTAGMode Select	HSTL-LVTTL INPUT	TMS is a serial inputpin. One offourterminals required by IEEE Standard 1149.1-1990. TMS directs the device through its TAP controller states. An internal pull-up resistor forces TMS HIGH ifleft unconnected.
$\overline{\text { TRST }}{ }^{(3)}$	JTAG Reset	HSTL-LVTTL INPUT	$\overline{\text { TRST }}$ is an asynchronous reset pin for the JTAG controller. The JTAG TAP controller does not automatically resetupon power-up, thus itmustbe resetby eitherthis signal orby setting TMS=HIGH for five TCK cycles. If the TAP controller is not properly reset then the FIFO outputs will always be in high-impedance. Ifthe JTAG function is used but he user does notwantto use TRST, then $\overline{\text { TRST }}$ can betied with $\overline{M R S}$ toensure properFIFO operation. Ifthe JTAG function is notused then thissignal needs to be tied to GND. An internal pull-up resistor forces TRST HIGH if left unconnected.
WCLK0/1/2/3	Write Clock0/1/2/3	HSTL-LVTTL INPUT	These are the clock inputs corresponding to each of the four FIFOs on the write port. If Dual mode is selected then WCLK1 and WCLK3 are not used and should be tied to GND. In SDR mode data will be written on the rising edge of WCLK when WEN and WCS are LOW atthe rising edge of WCLK. In DDR mode data will be written on both rising and falling edge of WCLK when $\overline{W E N}$ and $\overline{W C S}$ are LOW at the rising edge of WCLK.
$\overline{\text { WCS }}$ /1/2/3	WriteChipSelect	HSTL-LVTTL INPUT	These are the write chip select inputs correspondingto each of the four FIFOs on the write port. This pin can be regarded as a second write enable input, enabling/disabling write operations. WCS is only sampled on the rising edge of WCLK. If Dual mode is selected then WCS1 and WCS3 are not used and should be tied to Vcc.
WDDR	Write PortDDR	CMOS ${ }^{(2)}$ INPUT	During master reset,this pin selects the inputportto operate in DDR orSDRformat. IfWDDRisHIGH, then a word is written on the rising and falling edge of the appropriate WCLKO, 1,2 and 3 input. If WDDR is LOW, then a word is written only on the rising edge of the appropriate WCLKO, 1, 2 and 3inputs.
$\overline{\text { WEN0 }} / 1 / 2 / 3$	Write Enable 0/1/2/3	HSTL-LVTTL INPUT	These are the write enable inputs corresponding to each of the four FIFOs on the write port. InSDR, when this signal (and WCS) are LOW data on the databus will be written into the FIFO memory on every rising edge of WCLK. In DDR mode, data will be written on both rising and falling edges of WCLK. Note in DDR mode the $\overline{W E N}$ and $\overline{W C S}$ are only sampled on the rising edge of WCLK. New data will always begin writing from the rising edge, not the falling edge of WCLK. If Dual mode is selected then WEN1 and WEN3 are not used and should be tied to Vcc.
Vcc	+2.5V Supply	Power	These are Vcc core power supply pins and must all be connected to $\mathrm{a}+2.5 \mathrm{~V}$ supply rail.
VDDQ	Output Rail Voltage	Power	This pin should be tied to the desired voltage rail for providing to the outputdrivers. Nominally 1.5 V or 1.8 V for HSTL, 2.5 V for LVTTL.
GND	Ground Pin	Ground	These ground pins are for the core device and must be connected to the GND rail.
Vref	Reference voltage	Power	This is a Voltage Reference input and mustbe connected to a voltage level determined inthe Voltage Recommended DC Operating Conditions section. This provides the reference voltage when using HSTL class inputs. If HSTL class inputs are not being used, this pin must be connected to GND.

NOTES:

1. All unused outputs may be left floating.
2. All CMOS pins should remain unchanged. CMOS format means that the pin is intended to be tied directly to VcC or GND and these particular pins are not tested for VIH or VIL.
3. These pins are for the JTAG port. Please refer to pages 27-31 and Figures 7-9.

QUAD/DUAL I/O USAGE SUMMARY

SET-UP, CONFIGURATION \& RESET PINS

Regardless of the mode of operation, (Quad or Dual), the following inputs mustbealways be used. These inputs must be set-up with respect to master reset as they are latched during this time.
WDDR-Write PortDDR/SDR selection
RDDR - Read Port DDR/SDR selection
MD-Mode Selection
OW-Outputwidth
IW-InputWidth
FSEL[1:0]-Flag offset default values
IOSEL - I/O Level Selection
PFM - Programmable Flag Mode
FWFT/SI - First word Fall Through or IDT Standard mode

QUAD MODE

The following inputs/ outputs should be used when Mux mode is selected by the user:

INPUTS:
WCLK0, WCLK1, WCLK2, WCLK3-Four write port clocks $\bar{W} E N 0, \overline{W E N} 1, \overline{W E N} 2, \overline{W E N} 3$ - Four write port enables $\overline{W C S} 0, \overline{W C S} 1, \overline{W C S} 2, \overline{W C S} 3-$ Four write port chip selects RCLK0, RCLK1, RCLK2, RCLK3 - Four read port clocks REN0, $\overline{R E N} 1, \overline{R E N} 2, \overline{R E N} 3$ - Four read port enables $\overline{\mathrm{RCS}} 0, \overline{\mathrm{RCS}} 1, \overline{\mathrm{RCS}} 2, \overline{\mathrm{RCS}} 3,-$ Four read port chip selects $\overline{\mathrm{OE}} 0, \overline{\mathrm{OE}} 1, \overline{\mathrm{OE}} 2, \overline{\mathrm{OE}} 3$ - Four read port output enables

OUTPUTS:
ERCLK0, ERCLK1, ERCLK2, ERCLK3-Four read port echo read clocks EREN0, $\overline{E R E N} 1, \overline{E R E N} 2, \overline{E R E N} 3$ - Four read port echo read enables $\overline{\mathrm{EF}} 0 / \overline{\mathrm{OR}} 0, \overline{\mathrm{EF}} 1 / \overline{\mathrm{OR}} 1, \overline{\mathrm{EF}} 2 / \overline{\mathrm{OR}} 2, \overline{\mathrm{EF}} 3 / \overline{\mathrm{OR}} 3$ - Four read port Empty/Output Ready Flags
$\overline{\mathrm{FF}} 0 / \overline{\mathrm{R}} 0, \overline{\mathrm{FF}} 1 / \overline{\mathrm{R}} 1, \overline{\mathrm{FF}} 2 / / \overline{\mathrm{R}} 2, \overline{\mathrm{FF}} 3 / \overline{\mathrm{R}} 3$-Four write port full/ input ready flags िAE0, $\overline{\mathrm{PAE}} 1, \overline{\mathrm{PAE}} 2, \overline{\mathrm{PAE}} 3-F o u r$ readportprogrammablealmostemptyflags $\overline{\mathrm{PAF}} 0, \overline{\mathrm{PAF}} 1, \overline{\mathrm{PAF}} 2, \overline{\mathrm{PAF}} 3-F o u r$ write portprogrammablealmostemptyflags

SERIAL PORT

Thefollowing pins are used when user programming of the Programmable Flag offsets is required:
SCLK - Serial Clock
SWEN-Serial Write Enable
SREN - Serial Read Enable FWFT/SI - Serial Data In
SDO-Serial Data Out

DUAL MODE

The following inputs/ outputs should be used when Mux mode is selected by the user:

INPUTS:

WCLK0, WCLK2 - Two write port clocks
WEN0, WEN2 - Two write port enables
WCS0, $\overline{\text { WCS } 2 ~-~ T w o ~ w r i t e ~ p o r t ~ c h i p ~ s e l e c t s ~}$
RCLK0, RCLK2 - Two read port clocks
REN0, $\overline{R E N} 2$ - Two read port enables
$\overline{\mathrm{RCS}} 0, \overline{\mathrm{RCS}} 2-$ Two read port chip selects
$\overline{\mathrm{OE}} 0, \overline{\mathrm{OE} 2}$ - Two read port output enables
OUTPUTS:
ERCLK0, ERCLK2 - Two read port echo read clock outputs EREN0, EREN2 - Two read port echo read enable outputs $\overline{\mathrm{EF}} 0 / \overline{\mathrm{OR}} 0, \overline{\mathrm{EF}} 2 / \overline{\mathrm{OR}} 2$ - Two read port empty/output ready flags $\overline{\mathrm{FF}} 0 / \overline{\mathrm{R}} 0, \overline{\mathrm{FF}} 2 / \overline{\mathrm{R}} 2$ - Two write port Full/ Input Ready Flags $\overline{\text { PAE } 0, ~} \overline{\text { PAE }} 2$ - Two read port programmable almost empty flags $\overline{\text { PAF }}$, $\overline{\text { PAF2 }}$ - Two write port programmable almost full flags

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Rating	Com'I \& Ind'I	Unit
VTERM	Terminal Voltage with respect to GND	-0.5 to $+3.6^{(2)}$	V
TSTG	StorageTemperature	$-55 \mathrm{to}+125$	${ }^{\circ} \mathrm{C}$
Iout	DCOutputCurrent	$-50 \mathrm{to}+50$	mA
TJ	Maximum JunctionTemperature	+150	${ }^{\circ} \mathrm{C}$

NOTES

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability
2. Compliant with JEDEC JESD8-5. VCC terminal only.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter	Conditions	Max.	Unit
$\mathrm{CIN}^{(2,3)}$	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	$10^{(3)}$	pF
Cout $^{(1,2)}$	Output Capacitance	Vout $=0 \mathrm{~V}$	10	pF

NOTES:

1. With output deselected, ($\overline{\mathrm{OE}} \geq \mathrm{VIH}$).
2. Characterized values, not currently tested.
3. CIN for Vref is 20 pF .

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc	Supply voltage relative to GND	2.375	2.5	2.625	V
VDDQ	$\begin{aligned} \text { Outputsupply voltage } & \text {-LVTTL } \\ & \text { - eHSTL } \\ & \text {-HSTL }\end{aligned}$	$\begin{gathered} 2.375 \\ 1.7 \\ 1.4 \end{gathered}$	$\begin{aligned} & \hline 2.5 \\ & 1.8 \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline 2.625 \\ 1.9 \\ 1.6 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
VREF ${ }^{(1)}$	$\begin{array}{ll}\text { Voltage referenceinput } & \text { - eHSTL } \\ & - \text { HSTL }\end{array}$	$\begin{gathered} 0.8 \\ 0.68 \end{gathered}$	$\begin{gathered} 0.9 \\ 0.75 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
VIH	Inputhighvoltage - LVTTL - eHSTL - HSTL	1.7 Vreft0. 2 Vreft0.2	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 3.45 \\ \text { VDDQ }+0.3 \\ \text { VDDQ }+0.3 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$
VIL	Input low voltage - LVTTL - eHSTL - HSTL	$\begin{gathered} -0.3 \\ -0.3 \\ -0.3 \end{gathered}$	-	0.7 Vref-0.2 VREF-0.2	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$
TA	Operatingtemperature(Commercial)	0	-	+70	${ }^{\circ} \mathrm{C}$
TA	Operatingtemperature(Industrial)	-40	-	+85	${ }^{\circ} \mathrm{C}$

NOTES:

1. VREF is only required for HSTL or eHSTL inputs. VREF should be tied LOW for LVTTL operation.
2. $\mathrm{GND}=$ Ground.

DC ELECTRICAL CHARACTERISTICS

(Industrial: VCC $=2.5 \mathrm{~V} \pm 0.125 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter		Min.	Max.	Unit
ILI	InputLeakage Current		-10	+10	$\mu \mathrm{A}$
ILo	OutputLeakageCurrent		-10	+10	$\mu \mathrm{A}$
ICC3 ${ }^{(2,3)}$	JTAG InputLeakageCurrent		-	-16	mA
VoH ${ }^{(1)}$	OutputLogic"1"Voltage,	$\begin{aligned} & \text { IOH }=-8 \mathrm{~mA} @ \text { LVTTL } \\ & \mathrm{IOH}=-8 \mathrm{~mA} @ \mathrm{HSTL} \\ & \mathrm{IOH}=-8 \mathrm{~mA} @ \mathrm{HSTL} \end{aligned}$	VDDQ-0.4 Vdda-0.4 VddQ-0.4	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
VoL	Output Logic "0" Voltage,	loL $=8 \mathrm{~mA}$ @LVTTL IOL = 8 mA @eHSTL loL $=8 \mathrm{~mA} @ \mathrm{HSTL}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{ICC1} 1^{(2,3,4)}$	Active Vcc Current (Quad mode) (See Note 7 fortestconditions)		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 250^{(7)} \\ & 350^{(7)} \\ & 350^{(7)} \\ & \hline \end{aligned}$	mA mA mA
ICC2 ${ }^{(2,3,4)}$	Active Vcc Current (Dual mode) (See Note 8fortestconditions)		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 180^{(7)} \\ & 2955^{(7)} \\ & 295^{(7)} \\ & \hline \end{aligned}$	mA mA mA
IDDQ1 ${ }^{(2,3,5)}$	Active VDDQCurrent (Quadmode) (See Note 7 fortest conditions)	--LVTTL -- eHSTL -- HSTL	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 40 \end{aligned}$	mA mA mA
IDDQ2 ${ }^{(2,3,5)}$	Active VddQ Current (Dual mode) (See Note8fortestconditions)	--LVTTL -- eHSTL -- HSTL	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 35 \\ & 20 \\ & 20 \end{aligned}$	mA mA mA
ISB1 ${ }^{(2,3,4)}$	Standby Vcc Current (Quad mode) (See Note 9fortestconditions)	--LVTTL -- eHSTL -- HSTL	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 110^{(7)} \\ & 240^{(7)} \\ & 240^{(7)} \\ & \hline \end{aligned}$	mA mA mA
ISB2 ${ }^{(2,3,4)}$	Standby Vcc Current (Dual mode) (See Note 10 for testconditions)	--LVTTL -- eHSTL -- HSTL	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 100^{(7)} \\ & 185^{(7)} \\ & 185^{(7)} \\ & \hline \end{aligned}$	mA mA mA
ISB3 ${ }^{(2,3,5)}$	Standby VDDQCurrent (Quadmode) (See Note 9fortest conditions)	--LVTTL --eHSTL -- HSTL	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
ISB4 ${ }^{(2,3,5)}$	Standby VDDQCurrent(Dual mode) (See Note 10fortestconditions)	--LVTTL --eHSTL -- HSTL	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	mA mA mA
IPD1 ${ }^{(3,4)}$	Power Down Vcc Current (Quad mode) (See Note 11 fortest conditions)		$-$	$\begin{aligned} & 15^{(7)} \\ & 30^{(7)} \\ & 30^{(7)} \end{aligned}$	mA mA mA
IPD2 ${ }^{(3,4)}$	Power Down Vcc Current (Dual mode) (See Note 12fortestconditions)		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 15^{(7)} \\ & 30^{(7)} \\ & 30^{(7)} \end{aligned}$	mA mA mA
IPD3 ${ }^{(3,5)}$	Power Down VdDQ Current (Quad mode) (See Note 11 fortestconditions)	--LVTTL -- eHSTL -- HSTL	$-$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	mA mA mA
IPD4 ${ }^{(3,5)}$	Power Down VDDQ Current (Dual mode) (See Note 12 fortest conditions)	--LVTTL --eHSTL -- HSTL	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & \hline \end{aligned}$	mA mA mA

NOTES:

1. Outputs are not 3.3 V tolerant.
2. All WCLKs and RCLKs toggling at 20 MHz . Data inputs toggling at 10 MHz .
3. $\mathrm{VCC}=2.5 \mathrm{~V}, \overline{\mathrm{OE}} 0-3=\mathrm{HIGH}$.
4. Typical ICC1 calculation: for LVTTL I/O: ICC1 (Quad mode) $=11.25 \mathrm{x}$ fs

ICC1 (Dual mode) $=7.74 \mathrm{x}$ fs
for HSTL I/O: ICC1 (Quad mode) $=158+(11.25 x$ fs $)$
ICC1 (Dual mode) $=115+(7.74 x$ fs $)$
where fs $=$ WCLK $=$ RCLK frequency (in MHz)
5. Typical IDDQ calculation: With data outputs in High-Impedance: IDDQ (Quad mode) $=0.8 \mathrm{x}$ fs

$$
\text { IDDQ (Dual mode) }=0.3 x \text { fs }
$$

With data outputs in Low-Impedance: IDDQ (Quad mode and Dual mode) $=\underline{C L} \times \underline{\text { VDDQ }} \times$ fs $\times N$
where fs $=$ WCLK $=$ RCLK frequency (in MHz). CL = capacitance load (pF), $\mathrm{N}=$ Number of outputs switching
6. Total Power consumed: $\mathrm{PT}=[(\mathrm{VCC} \times \mathrm{ICC})+(\mathrm{VDDQ} \times$ IDDQ $)]$.
7. Maximum value tested wth RCLK $=$ WCLK $=20 \mathrm{MHz}$ at $85^{\circ} \mathrm{C}$. Maximum value may differ depending on VCC and temperature.
8. $\overline{\mathrm{WENO}} 0-3=\overline{\mathrm{REN}} 0-3=$ LOW, $\overline{\mathrm{WCS}} 0-3=\overline{\mathrm{RCS}} 0-3=$ LOW, $\overline{\mathrm{PD}}=\mathrm{HIGH}$.
9. $\overline{\mathrm{WEN}} 0,2=\overline{\mathrm{REN}} 0,2=\mathrm{LOW}, \overline{\mathrm{WCS}} 0,2=\overline{\mathrm{RCS}} 0,2=\mathrm{LOW}, \overline{\mathrm{PD}}=\mathrm{H}$ GH.
10. $\overline{\text { WEN } 0-3 ~}=\overline{\text { RENO }}-3=$ HIGH, $\overline{\mathrm{WCS}} 0-3=\overline{\mathrm{RCSO}} 0-3=\mathrm{HIGH}, \overline{\mathrm{PD}}=\mathrm{HIGH}$.
11. $\overline{\mathrm{WEN}} 0,2=\overline{\mathrm{REN}} 0,2=\mathrm{HIGH}, \overline{\mathrm{WCS}} 0,2=\overline{\mathrm{RCS}} 0,2=\mathrm{HIGH}, \overline{\mathrm{PD}}=\mathrm{HIGH}$.
12. $\overline{\text { WENO }} 0-3=\overline{\mathrm{RENO}}-3=\mathrm{HIGH}, \overline{\mathrm{WCS}} 0-3=\overline{\mathrm{RCSO}}-3=\mathrm{HIGH}, \overline{\mathrm{PD}}=\mathrm{LOW}$.
13. $\overline{\mathrm{WENO}} 0,2=\overline{\mathrm{REN}} 0,2=\mathrm{HIGH}, \overline{\mathrm{WCS}} 0,2=\overline{\mathrm{RCS}} 0,2=\mathrm{HIGH}, \overline{\mathrm{PD}}=\mathrm{LOW}$.

AC ELECTRICALCHARACTERISTICS ${ }^{(1)}$
(Commercial: $\mathrm{VCC}=2.5 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VCC}=2.5 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	CommericalIDT72T54242L5IDT72T54252L5IDT72T54262L5		Com'I \& Ind'IIDT72T54242L6-7IDT72T54252L6-7IDT72T54262L6-7		Unit
		Min.	Max.	Min.	Max.	
fs 1	Clock Cycle Frequency (WCLK \& RCLK) SDR	-	200	-	150	MHz
fs2	Clock Cycle Frequency (WCLK \& RCLK) DDR	-	100	-	75	MHz
tA	Data Access Time	0.6	3.6	0.6	3.8	ns
tclk1	Clock Cycle Time SDR	5	-	6.7	-	ns
tcLk2	Clock Cycle Time DDR	10	-	13	-	ns
tclek1	Clock High Time SDR	2.3	-	2.8	-	ns
tCLKH2	Clock High Time DDR	4.5	-	6.0	-	ns
tcLKL1	Clock Low Time SDR	2.3	-	2.8	-	ns
tCLKL2	Clock Low Time DDR	4.5	-	6.0	-	ns
tos	Data Setup Time	1.5	-	2.0	-	ns
tDH	Data Hold Time	0.5	-	0.5	-	ns
tens	Enable Setup Time	1.5	-	2.0	-	ns
tenh	Enable Hold Time	0.5	-	0.5	-	ns
fc	Clock Cycle Frequency (SCLK)	-	10	-	10	MHz
taso	Serial Output Data Access Time	-	20	-	20	ns
tsclk	Serial Clock Cycle	100	-	100	-	ns
tsckH	Serial Clock High	45	-	45	-	ns
tsckL	Serial Clock Low	45	-	45	-	ns
tsDs	Serial Data In Setup	15	-	15	-	ns
tsoh	Serial Data In Hold	5	-	5	-	ns
tsens	Serial Enable Setup	5	-	5	-	ns
tsent	Serial Enable Hold	5	-	5	-	ns
trs ${ }^{(3)}$	Reset Pulse Width	200	-	200	-	ns
tRSS	Reset Setup Time	15	-	15	-	ns
tRSR	Reset Recovery Time	10	-	10	-	ns
tRSF	Reset to Flag and Output Time	-	12	-	15	ns
tolz ($\overline{\mathrm{E}}$ - Qn)	Output Enable to Output in Low-Impedance	0.6	3.6	0.8	3.8	ns
tohz	Output Enable to Output in High-Impedance	0.6	3.6	0.8	3.8	ns
toe	Output Enable to Data Output Valid	0.6	3.6	0.8	3.8	ns
trCsLz	RCLK to Active from High-Impedance	-	3.6	-	3.8	ns
trCshz	RCLK to High-Impedance	-	3.6	-	3.8	ns
tpdLz	Power Down to Output Low-Impedance	-	19.4	-	19.6	ns
tPDHz	Power Down to Output High-Impedance	-	13.5	-	13.7	ns
tPDL	Power Down LOW	-	19.4	-	19.6	ns
tPDH	Power Down HIGH	1	-	1	-	$\mu \mathrm{s}$
twFF	Write Clock to FF or $\overline{\mathrm{R}}$	-	3.6	-	3.8	ns
tREF	Read Clock to EF or $\overline{\mathrm{OR}}$	-	3.6	-	3.8	ns
tPAFS	Write Clock to Synchronous Programmable Almost-Full Flag	-	3.6	-	3.8	ns
PAES	Read Clock to Synchronous Programmable Almost-Empty Flag	-	3.6	-	3.8	ns
tPAFA	Write Clock to Asynchronous Programmable Almost-Full Flag	-	10	-	12	ns
taiea	Read Clock to Asynchronous Programmable Almost-Empty Flag	-	10	-	12	ns
terclk	RCLK to Echo RCLK Output	-	4.0	-	4.3	ns
tcliken	RCLK to Echo REN Output	-	3.6	-	3.8	ns
tSkEW1	SKEW time between RCLK and WCLK for $\overline{E F} / \overline{O R}$ and $\overline{\text { FF/IR }}$ for SDR inputs and outputs	4	-	5	-	ns
tSkEW2	SKEW time between RCLK and WCLK for EF/OR and $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$ in for DDR inputs and outputs	5	-	6	-	ns
tSkEw3	SKEW time between RCLK and WCLK for $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$	5	-	6	-	ns

NOTES

1. With exception to clock cycle frequency, these parameters apply to both DDR and SDR modes of operation.
2. All AC timings apply to both IDT Standard mode and FWFT mode in both Quad and Dual mode.
3. Pulse width less than the minimum value is not allowed.
4. Values guaranteed by design, not currently tested.
5. Industrial temperature range product for the $6-7 \mathrm{~ns}$ speed grade is available as a standard device. All other speed grades available by special order.

HSTL

AC TEST LOADS

1.5V AC TEST CONDITIONS

Input Pulse Levels	0.25 to 1.25 V
InputRise/Fall Times	0.4 ns
InputTiming Reference Levels	0.75 V
OutputReferenceLevels	0.75 V

NOTES:

1. $\mathrm{VDDQ}=1.5 \mathrm{~V}$.
2. V REF $=0.75 V$.

EXTENDED HSTL

1.8V AC TEST CONDITIONS

InputPulse Levels	0.4 to 1.4 V
InputRise/Fall Times	0.4 ns
InputTiming Reference Levels	0.9 V
OutputReferenceLevels	0.9 V

NOTES:

1. $\mathrm{VDDQ}=1.8 \mathrm{~V}$.
2. $\mathrm{VREF}=0.9 \mathrm{~V}$.

Figure 2b. Lumped Capacitive Load, Typical Derating

LVTTL

2.5V AC TEST CONDITIONS

InputPulse Levels	GND to 2.5 V
InputRise/FallTimes	1 ns
InputTiming ReferenceLevels	1.25 V
OutputReferenceLevels	1.25 V

NOTE:

1. For LVTTL, $V C C=V D D Q=2.5 \mathrm{~V}$.

Figure 2a. AC Test Load

OUTPUT ENABLE \& DISABLE TIMING

NOTES:

1. $\overline{\mathrm{REN}}$ is HIGH.
2. RCS is LOW.

READ CHIP SELECT ENABLE \& DISABLE TIMING

FUNCTIONAL DESCRIPTION

MASTER RESET \& DEVICE CONFIGURATION

During Master Reset the device configuration and settings are determined, this includes the following:

1. Quad or Dual mode
2. IDT Standard or First Word Fall Through (FWFT) flag timing mode
3. Single or Double Data Rates on both the Write and Read ports
4. Programmable flag mode, synchronous or asynchronoustiming
5. Write and Read Port Bus Widths, x 10 or x 20 (in Dual mode only)
6. Default Offsets for the programmable flags, $7,63,127$, or 1023
7. LVTTL or HSTL I/O selection

The state of the configuration inputs during master reset will determine which of the above modes are selected. A master resetcomprises of pulsing the $\overline{\mathrm{MRS}}$ input pin from high to low for a period of time (tRS) with the configuration inputs held in their respective states. Table 1 summarizes the configuration modes available during master reset. They are described as follows:

Quad or Dual mode. This mode is selected using the MD input. If during master reset, MD is HIGHthen Quadmode is selected, ifMD is LOW then Dual mode is selected. In Quad mode four independentFIFOs are available, while in Dual mode two independent FIFOs are available.

IDT Standard or FWFT mode. The two available flag timing modes are selected using the FWFT/SI input. IfFWFT/SI is LOW during master resetthen IDT Standard mode is selected, ifit is highthen FWFT mode is selected. The timing modes are described later inthis section.

Single Data Rate (SDR) or Double Data Rate (DDR). The input/output data rates are portselectable. This is a versatile feature that allows the userto selecteitherSDR orDDR on the write ports and/or read ports of all FIFOs using theWDDRand RDDR inputs. IfWDDRisLOW during master resetthenthe write ports of all FIFOs will function in SDR mode; ifit is highthen the write ports will be DDR mode. If RDDR is LOW during master reset then the read ports of all

TABLE 1 - DEVICE CONFIGURATION

PINS	VALUES	CONFIGURATION
MD	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Dualmode Quadmode
FWFT/SI	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	IDTStandardmode FWFTmode
WDDR	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Single Data Rate write port Double Data Rate write port
RDDR	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Single Data Rate read port Double Data Rate read port
PFM	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Asynchronous operation of $\overline{\text { PAE }}$ and $\overline{\mathrm{PAF}}$ outputs Synchronous operation of $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$ outputs
IW	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Write port is 10 bits wide Write port is 20 bits wide in dual mode, 10 bits wider in Dual mode
OW	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Read port is 10 bits wide Read port is 20 bits wide in dual mode, 10 bits wider in Dual mode
FSEL[1:0]	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	Programmable flag registers offset value $=7$ Programmableflag registers offsetvalue=63 Programmableflag registers offsetvalue $=127$ Programmable flagregisters offsetvalue $=1023$
IOSEL	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	All applicable I/Os (except CMOS) are LVTTL All applicable I/Os (except CMOS) are HSTL/eHSTL

FIFOs willfunction inSDR mode; ifitis highthen the read portwill beDDRmode. This feature is described inthe Signal Descriptions section.

Programmable Almost Empty/Full Flags. These flags can operate in either synchronous or asynchronous timing mode. If the programmable flag input, PFM is HIGH duringmaster resetthen all programmableflags will operate in a synchronous manner, meaning the $\overline{\text { PAE flags are double buffered and }}$ updated based on the rising edge of its respective read clocks. The $\overline{\text { PAF }}$ flags are also double buffered andupdated based on the rising edge of its respective write clocks. If it is LOW then all programmable flags will operate in an asynchronous manner, meaningthe $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ flags are not doublebuffered and will update throughthe internal counter after a nominal delay. This feature is described inthe Signal Descriptions section.
Selectable Bus Width. In Dual mode, the bus width can be selected on the read and write ports using the IW and OW inputs. IfIW is LOW then the write ports will be 10 bits wide, if IW is HIGH then the write ports will be 20 bits wide. IfOW isLOW thenthe read ports will be 10 bits wide, ifOW is HIGHthenthe read ports will be 20 bits wide. Note in Quad mode the inputs and outputs arealways 10 bits wide regardless of the state of these pins. This feature is described inthe Signal Descriptions section.
Programmable Flag Offset Values. These offset values can be user programmed or they can be set to one of four default values during a master reset. Fordefaultprogramming, the state of the FSEL[1:0] inputs during master reset will determine the value. Table2, Default Programmable offsets lists the fouroffset values and how to selectthem. For programming the offset values to a specific number, use the serial programming signals(SCLK, SWEN, $\overline{\text { SREN }}$, FWFT/SI) to load the value into the offset register. You may also use the JTAG port on this device to load the offset value. Keep in mind that you must disable the serial programming signals if you plan to use the JTAG port for loading the offset values. To disable the serial programming signals, tie SCLK, SWEN, $\overline{\text { SREN }}$, and FWFT/SI to VCC. A thorough explanation of the serial and JTAG programming oftheflagoffsetvalues is providedinthe "SerialWriteand Reading of OffsetRegisters" section.
I/O Level Selection. The I/Os canbe selectedfor either2.5V LVTTLlevels or $1.5 \mathrm{VHSTL} / 1.8 \mathrm{~V}$ eHSTL levels. The state of the IOSEL input will determine which I/O level will be selected. If IOSEL is HIGH then the applicable I/Os will be 1.5V HSTL or 1.8 V eHSTL, depending onthe voltage level applied to VDDQ andVref. For HSTL, VDDQandVref=1.5V andforeHSTLVDDQandVref $=1.8 \mathrm{~V}$. If IOSEL is LOW thenthe applicable I/Os will be2.5V LVTTL. As noted inthe Pin Descriptionsection, IOSEL is aCMOS inputandmustbetied to either Vcc or GND for proper operation.

TABLE 2 - DEFAULT PROGRAMMABLE FLAG OFFSETS

IDT72T54242 IDT72T54252 IDT72T54262		
FSEL1	FSEL0	Offsets n,m
0	0	7
0	1	63
1	0	127
1	1	1023

NOTES:

1. In default programming, the offset value selected applies to all internal FIFOs.
2. To program different offset values for each FIFO, serial programming must be used.
3. n is the offset value for PAE, m is the offset value for PAF.

SERIAL WRITING AND READING OF OFFSET REGISTERS

The offset registers can be loaded with a default value or they can be user programmed with a specific value. One of four default values are loaded based on the state of the FSEL[1:0] inputs. Theflag offset values canbe programmed either through the dedicated serial programming port or the JTAG port. The dedicated serial port can be used to load or read the contents of the offset registers. The offset registers are programmed and read sequentially through a series of shift registers. Each bit in the serial input will shift throughthe offset registers and program each FIFOs offset registers.
The serial read and write operations are performed by the dedicated SCLK, FWFT/SI, $\overline{\text { SWEN }}, \overline{\text { SREN }}$ and SDO pins. The total number of bits required per device are listed in Figure 3, Programmable Flag Offset Programming Methods. Thesebits accountfor all four $\overline{\text { PAE }} / \overline{\mathrm{PAF}}$ offset registers in the device. To write to the offset registers, setthe serial write enable signal active(LOW), and oneach rising edge of SCLK onebitfromtheFWFT/SI pin is serially shifted into the flag offset register chain. Once the complete number of bits has been programmed into allfour registers, the programming sequence is complete. The programming sequence is listed in Figure3. To read the values from the offset registers, set the serial read enable active (LOW). Then on each rising edge of SCLK, one bit is shifted out to the serial data output. The serial read enable mustbekeptLOW throughouttheentire readoperation. Tostop reading theoffset register, disable the serial read enable(HIGH). There is a setup time for reading
the offsetregisters, as theoffsetregisterdataforeachFIFO is temporarily stored in a scanchain. When data has been completely read out of the offset registers, any additional read operations to the offset register will result in zeros as the outputdata.

Reading and writing the offset registers can also be accomplished using the JTAG port. To write totheoffsetregisters using JTAG, setthe instructional register totheoffsetwritecommand (HexValue $=0 \times 0008$). TheJTAG portwill loaddata into each of the offset registers in a similarfashion as the serial programming describedabove. To readthe valuesfromtheoffsetregisters, settheinstructional registertotheoffsetreadcommand(HexValue=0x0007). TheTDOoftheJTAG port will output data in a similar fashion as the serial programming described above.

The number of bits required to load the offset registers is dependent on the size of the device selected and the width ofthel/Os selected. Eachoffset register requires 15 bits, 16 bits or 17 bits for the IDT72T54242/72T54252/72T54262 devices respectively. So a total of 120 bits, 128 bits or 136 bits will need to be loadedintoeachoffsetregisterchainfortheIDT72T54242/72T54252/72T54262 devices respectively. IfDualmode is selected, only two of the four offset register will need to be programmed ($\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}} 2, \overline{\mathrm{PAE}} / \overline{\mathrm{PAF}} 0)$. Therefore, the total number of bits required will be half of its Quad mode operation. See Figure 4, OffsetRegisterSerial BitSequencefor a mapping of the serial bits to each offset registers.

JTAG Programming Instruction Code	Serial Programming		IDT Part Number	Quad Mode	Dual Mode ${ }^{(4)}$ (IW/OW = x10)	Dual Mode (IW/OW = x20)
0008 (Hex)	SWEN	$\overline{\text { SREN }}$				
	0	1	IDT72T54242	120	60	56
			IDT72T54252	128	64	60
			IDT72T54262	136	68	64
0007 (Hex)	1	0	IDT72T54242	120	60	56
			IDT72T54252	128	64	60
			IDT72T54262	136	68	64

6158 drw07

PROGRAMMING INSTRUCTIONS:

JTAG Programming

1. Load JTAG Instruction code in "JTAG Timing Specifications" section.
2. Use rising edge of TCK to clock in the required bits from the TD2 input or to clock out from the TDO output pin.

Serial Programming

1. Set $\overline{\text { SWEN }}$ and $\overline{\text { SREN }}$ as shown above.
2. If reading, $\overline{\text { SREN }}$ LOW will clock data out of the SDO pin on every rising TCK edge. If writing, $\overline{\text { SWEN }}$ LOW will clock in data from the FWFT/SI pin.

NOTES:

1. The programming methods apply to both IDT Standard mode and FWFT mode.
2. The number of bits indicated are for all four $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offset registers.
3. $\overline{\text { SWEN }}=0$, and $\overline{\text { SREN }}=0$ simultaneously are not allowed.
4. In Dual mode (IW/OW = x10), the total number of bits required will be half since only two FIFOs are active
5. Parallel programming is not available.

Figure 3. Programmable Flag Offset Programming Methods

TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH

 (FWFT) MODEThe IDT72T54242/72T54252/72T54262supporttwo differenttiming modes of operation:IDTStandard mode and FirstWord Fall Through (FWFT) mode. The selection of which mode will be used is determined during master reset, by the state of the FWFT input.

During master reset, if the FWFT pin is LOW, then IDT Standard mode will be selected. This mode usesthe Empty Flag ($\overline{\mathrm{EF}}$) to indicate whetherornotthere are any words present in the FIFO. It also uses the Full Flag ($\overline{\mathrm{FF}}$) to indicate whether or not the FIFO has any free space for writing. InIDTStandardmode, every word read from the FIFO, including the first, mustbe requested using the Read Enable ($\overline{\mathrm{REN}}$), Read Chip Select ($\overline{\mathrm{RCS}}$), and RCLK.

If the FWFT pin is HIGH during master reset, then FWFT mode will be selected. This mode uses Output Ready ($\overline{\mathrm{OR}})$ to indicate whether or not there is valid dataatthe data outputs. Italso uses Input Ready ($\overline{\mathrm{IR}}$) to indicate whether or not the FIFO has any free space for writing. Inthe FWFT mode, the firstword written to an empty FIFO goes directly to output bus after three RCLK rising edges. Applying $\overline{\operatorname{REN}}=$ LOW is notnecessary, although having $\overline{\mathrm{RCS}}=0$ at the previous rising RCLK is necessary to keep the output from being in highimpedance. However, subsequent words must be accessed using Read Enable ($\overline{\mathrm{REN}})$, Read Chip Select ($\overline{\mathrm{RCS}})$, and RCLK. Various signals in both inputsandoutputsoperatedifferentlydependingonwhichtiming modeisineffect. The timing mode selected affects all internal FIFOs and are not programmed individually.

IDT STANDARD MODE

In this mode, the status flags $\overline{F F}, \overline{\mathrm{PAF}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{EF}}$ operate in the manner outlined in Table3, Status Flags for IDT Standard Mode. To write data into the FIFO, Write Enable ($\overline{\mathrm{WEN}})$, andWrite Chip Select $(\overline{\mathrm{WCS}})$ mustbe LOW. Data presented to the DATA IN lines will be clocked into the FIFO on subsequent transitions oftheWriteClock(WCLK). Afterthefirstwrite is performed, the Empty Flag ($\overline{\mathrm{EF}}$) will go HIGH. Subsequent writes will continue to fill up the FIFO. The Programmable Almost-Empty flag ($\overline{\mathrm{PAE}}$) will go HIGH after $\mathrm{n}+1$ words have been loaded into the FIFO, where " n " is the empty offset value. The default
settings for these values are listed in Table 2. This parameter is also user programmableasdescribedintheSerialWritingand Reading of OffsetRegisters section.
Continuing to write dataintothe FIFO withoutperforming read operations will cause the Programmable Almost-Full flag $(\overline{\mathrm{PAF}})$ to go LOW. Again, if no reads areperformed, the $\overline{\mathrm{PAF}}$ will goLOW after(32,768-m) writesforthe IDT72T54242, ($65,536-\mathrm{m}$) writes for the IDT72T54252, and ($131,072-\mathrm{m}$) writes for the IDT72T54262. Inx20 dual mode, $\overline{\text { PAF }}$ will goLOW after ($16,384-\mathrm{m}$) writes for the IDT72T54242, (32,768-m) writes for the IDT72T54252, and ($65,536-\mathrm{m}$) writes for the IDT72T54262. The offset " m " is the full offset value. The default setting for these values are listed in Table 3, Status Flags for IDT Standard Mode. This parameter is also user programmable. See the section on Serial Writing and Reading of Offset Registers for details.

When the FIFO is full, the Full Flag ($\overline{\mathrm{FF}})$ will go LOW, inhibiting further write operations. Ifno reads are performed aftera reset, $\overline{\mathrm{FF}}$ will go LOW afterD writes to the FIFO, where D=32,768 writes for the IDT72T54242, 65,536 writes for the IDT72T54252, and 131,072 writes forthe IDT72T54262. Inx20 dual mode, $\overline{\text { FF }}$ will go LOW after 16,384 writes for the IDT72T54242, 32,768 writes for the IDT72T54252, and 65,536 writes for the IDT72T54262.
IftheFIFO isfull, thefirstread operation will cause $\overline{F F}$ togo HIGH . Subsequent read operations will cause $\overline{\mathrm{PAF}}$ to go HIGH atthe conditions described in Table 3, Status Flags for IDT StandardMode. Iffurther read operations occur without write operations, $\overline{\mathrm{PAE}}$ will go LOW when there are n words in the FIFO, where n is the empty offset value. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, the EF will go LOW inhibiting further read operations. $\overline{\text { REN }}$ is ignored when the FIFO is empty, but $\overline{\mathrm{RCS}}$ will continue to determine whetheror not the output is in highimpedance.

When configured in IDT Standard mode, the $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ outputs are double register-buffered outputs. IDT Standard mode is available when the device is configured in either Single Data Rate or Double Data Rate mode. Relevant timing diagrams for IDT Standard mode can befound in Figure 10, 11, 12, 13, $14,15,16,17,18$ and 23.

Serial Bits	IDT72T54242 Quad mode	IDT72T54252 Quad mode	IDT72T54262 Quad mode	IDT72T54242 Dual mode IW/OW = x20	IDT72T54242 Dual mode IW/OW = x10 or IDT72T54252 IW/OW = x20	IDT72T54252 Dual mode IW/OW = x10 or IDT72T54262 IW/OW = x20	IDT72T54262 Dual mode IW/OW = x10	Offset Register
	1-15	1-16	1-17	-	-	-	-	$\overline{\text { PAE3 }}{ }^{(1)}$
	16-30	17-32	18-34	-	-	-	-	$\overline{\text { PAF3 }}{ }^{(1)}$
	31-45	33-48	35-51	1-14	1-15	1-16	1-17	$\overline{\text { PAE2 }}$
	46-60	49-64	52-68	15-28	16-30	17-32	18-34	$\overline{\text { PAF2 }}$
	61-75	65-80	69-85	-	-	-	-	$\overline{\text { PAE }}{ }^{(1)}{ }^{(1)}$
	76-90	81-96	86-102	-	-	-	-	$\overline{\mathrm{PAF}} 1^{(1)}$
	91-105	97-112	103-119	29-42	31-45	33-48	35-51	$\overline{\text { PAE0 }}$
	106-120	113-128	120-136	43-56	46-60	49-64	52-68	$\overline{\text { PAF0 }}$

NOTES:

6158 drw08

1. These registers are not used in Dual mode. They are not programmed or read in the serial chain.
2. In all modes, the higher numbered bit is the MSB. For example, in the IDT72T54242 in Quad mode, the first bit is the LSB for $\overline{\text { PAE }} 3$.

Figure 4. Offset Registers Serial Bit Sequence

FIRST WORD FALL THROUGH MODE (FWFT)

Inthis mode, the status flags $\overline{\mathrm{R}}, \overline{\mathrm{R}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{PAF}}$ operate in the manner outlined in Table 4, Status Flags forFWFTMode. To write data into to the FIFO, $\overline{\text { WEN }}$, and $\overline{\text { WCS }}$ must be LOW. Data presented to the DATA IN lines will be clocked intothe FIFO on subsequentransitions of WCLK. After the firstwrite is performed, the Output Ready ($\overline{\mathrm{OR}}$) flag will go LOW. Subsequent writes will continue to fill upthe FIFO. PAE will go HIGH aftern +2 words have been loaded into the FIFO, where n is the empty offset value. The default setting for these values are listed in Table 4, Status Flags for FWFT Mode. This parameter is alsouserprogrammableas describedintheSerial Writing and Reading of Offset Registerssection.
Continuingto write dataintothe FIFO withoutperforming read operations will cause the Programmable Almost-Full flag(PAF)togo LOW. Again, if no reads areperformed, the $\overline{\text { PAF }}$ will goLOW after ($32,769-\mathrm{m}$) writesforthe IDT72T54242, ($65,537-\mathrm{m}$) writes for the IDT72T54252, and ($131,073-\mathrm{m}$) writes for the IDT72T54262. In x20 dual mode, PAF will go LOW after ($16,385-\mathrm{m}$) writes for the IDT72T54242, ($32,769-\mathrm{m}$) writes for the IDT72T54252, and ($65,537-\mathrm{m}$) writes for the IDT72T54262. The offset " m " is the full offset value. The default setting for these values are listed in Table 4, Status Flags for FWFTMode. This parameter is also user programmable. See the section on serial writing and reading of offsetregisters for details.

Whenthe FIFO isfull, the Input Ready $(\overline{\mathbb{R}})$ will goLOW, inhibiting furtherwrite operations. Ifno reads are performed after areset, $\overline{\mathbb{R}}$ will go LOW after D writes to the FIFO, where $\mathrm{D}=32,769$ writes for the IDT72T54242, 65,537 writes for the IDT72T54252, and 131,073 writes forthe IDT72T54262. Inx20 dual mode, FF will go LOW after 16,385 writes for the IDT72T54242, 32,769 writes for the IDT72T54252, and 65,537 writes for the IDT72T54262.
Ifthe FIFO is full, thefirstread operation will cause $\overline{\mathrm{R}}$ to go HIGH. Subsequent read operations will cause $\overline{\mathrm{PAF}}$ to go HIGH at the conditions described in Table 4, Status Flags for FWFT Mode. Iffurther read operations occur without write operations, PAE will go LOW when there are n words in the FIFO, where n is the empty offset value. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, the $\overline{\mathrm{OR}}$ will go HIGH inhibiting further read operations. $\overline{\text { REN }}$ is ignored when the FIFO is empty, but $\overline{\mathrm{RCS}}$ will continue to determine whether or not the output is in highimpedance.
When configuredin FWFT mode, the $\overline{\text { OR }}$ flagoutputistriple register-buffered and the $\overline{\mathbb{R}}$ flagoutputis double register-buffered. Relevantiming diagrams for FWFT mode can be found in Figure 19, 20, 21, 22 and 24.

TABLE 3 - STATUS FLAGS FOR IDT STANDARD MODE

Number of Words in FIFO	IDT72T54242 Dual mode IW/OW = x20	IDT72T54242 Quad mode or Dual mode IW/OW = x10 or IDT72T54252 Dual mode IW/OW = x20	IDT72T54252 Quad mode or Dual mode IW/OW = x10 or IDT72T54262 Dual mode IW/OW = x20	IDT72T54262 Quad mode or Dual mode IW/OW = x10	$\overline{F F}$	$\overline{\text { PAF }}$	$\overline{\text { PAE }}$	$\overline{E F}$
	0	0	0	0	H	H	L	L
	1 to n	1 to n	1 to n	1 to n	H	H	L	H
	16,384-(m) to 16,383	32,768-(m) to 32,767	65,536-(m) to 65,535	131,072-(m) to 131,071	H	L	H	H
	16,384	32,768	65,536	131,072	L	L	H	H

NOTE:

1. See Table 2 for values for n, m. Values n, m may be different for each FIFO.

TABLE 4 - STATUS FLAGS FOR FWFT MODE

Number of Words in FIFO	IDT72T54242 Dual mode IW/OW = x20	IDT72T54242 Quad mode or Dual mode IW/OW = x10 or IDT72T54252 Dual mode IW/OW = x20	IDT72T54252 Quad mode or Dual mode IW/OW = x10 or IDT72T54262 Dual mode IW/OW = x20	IDT72T54262 Quad mode or Dual mode IW/OW = x10	$\overline{\mathrm{I}}$	$\overline{\text { PAF }}$	$\overline{\text { PAE }}$	$\overline{\text { OR }}$
	0	0	0	0	L	H	L	H
	1 to $\mathrm{n}+1$	1 to $\mathrm{n}+1$	1 to $\mathrm{n}+1$	1 to $\mathrm{n}+1$	L	H	L	L
	16,385-(m) to 16,384	32,769 - (m) to 32,768	65,537-(m) to 65,536	131,073-(m) to 131,072	L	L	H	L
	16,385	32,769	65,537	131,073	H	L	H	L

NOTE:

1. See Table 2 for values for n, m. Values n, m may be different for each FIFO.

SELECTABLE MODES

This device is capable ofoperating intwo differentmodes: QuadmodeorDual mode. Inthe Quadmode there are four independent FIFOs available, with the input and output bus widths set to 10 bits wide for each FIFO. A total of eight independent clock inputs are available-four RCLKs and four WCLKs. Each FIFO has independent read and write controls, output enable controls, as well as individual status flags $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}, \overline{\mathrm{FF}} / \overline{\mathrm{IR}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{PAF}}$. Also available areecho outputsERCLKand EREN foreach individual FIFOtoaidhigh-speed operation where synchronizing data is critical.

IntheDual mode there are two independentFIFOs available, with the input and output bus widths each selectable between x10 or x20. Bus-matching is available in this mode, allowing for more flexibility. A total of four independent clock inputs are available, two RCLKs and two WCLKs. Each FIFO has independent read and write controls- output enable controls, as well as individual status flags $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}, \overline{\mathrm{FF}} / \overline{\mathrm{R}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{PAF}}$. Also available are echo outputsERCLKand EREN foreach individual FIFO toaidhigh-speed operation where synchronizing data is critical.

HSTL/LVTTL I/O

The inputs and outputs of this device can be configured for either LVTTL or HSTL/eHSTL operation. If the IOSEL pin is HIGH during master reset, then all applicable LVTTL or HSTL signals will be configured for HSTL/eHSTL operating voltage levels. To select between HSTL or eHSTL Vref must be driven to 1.5 V or 1.8 V respectively. Typically a logic HIGH in HSTL would be VREF +0.2 V and a logic LOW would be Vref -0.2 V .

If the IOSEL pin is LOW during master reset, then all applicable LVTTL or HSTL signals will be configured for LVTTL operating voltage levels. In this configuration VREF must be setto GND. Table 5illustrates which pins are and
arenotassociated withthis feature. Notethatall "StaticPins" mustbetiedto Vcc orGND. These pins are LVTTL only and are purely device configuration pins. Notethe IOSEL pinshould betied HIGH or LOW and cannottoggle before and aftermaster reset.

BUS MATCHING

In the Dual mode operation, the write and read port have bus-matching capability such that the input and output busses can each be either 10 bits or 20 bits wide. The bus width of boththe inputand output portis determinedduring masterresetusingtheinput(IW) andoutput(OW) widthssetuppins. The selected port width is applied to both FIFO ports, suchthatboth FIFOs will be configured for either x10 or x20 bus widths. When writing or reading data from aFIFO the number of memory locations available to be read will depend on the bus width selected and the density of the device.

Ifthe write/read ports are 10bits wide, this providestheuserwithaFIFO depth of $32,768 \times 10$ for the IDT72T54242, $65,536 \times 10$ for the IDT72T54252, or $131,072 \times 10$ for the IDT72T54262. If the write/read ports are 20 bits wide, this provides the user with a FIFO depth of $16,384 \times 20$ for the IDT72T54242, $32,768 \times 20$ for the IDT72T54252, or $65,536 \times 20$ for the IDT72T54262. The FIFO depths willalways have afixeddensity of 327,680 bits forthe IDT72T54242, 655,360 bits for the IDT72T54252 and 1,310,072 bits for the IDT72T54262 regardless of bus-width configuration on the write/read port. Whenthe device is operating in double data rate, the word is twice as large as in single data rate since one word consists of both the rising and falling edge of clock. Therefore in DDR, the FIFO depths will behalf of whatitis mentionedabove. For instance, if the write/read port is 10 bits wide, the depth of each FIFO is $16,384 \times 10$ for the IDT72T54242, 32,768 x 10 for the IDT72T54252, or $65,536 \times 10$ for the IDT72T54262. SeeFigure5, Bus-Matching in Dualmodeformore information.

TABLE 5 - I/O VOLTAGE LEVEL ASSOCIATIONS

LVTTL/HSTL/eHSTL SELECT					STATIC CMOS SIGNALS
Write Port	Read Port	JTAG	Signal Pins	Serial Clock Port	Static Pins
D[39:0] WCLKO/1/2/3 WEN0/1/2/3 WCS0/1/2/3 FF/IR0/1/2/3 PAF0/1/2/3	Q[39:0] RCLK0/1/2/3 REN0/1/2/3 RCS0/1/2/3 EF/OR0/1/2/3 OE0/1/2/3 PAE0/1/2/3 ERCLK0/1/2/3 ERENO/1/2/3	$\begin{aligned} & \hline \text { TCK } \\ & \hline \text { TRST } \\ & \text { TMS } \\ & \text { TDI } \\ & \text { TDO } \end{aligned}$	$\frac{\mathrm{FSEL}[1: 0]}{\mathrm{PD}}$ $\frac{\mathrm{MRS}}{\mathrm{PRS} 0 / 1 / 2 / 3}$ $\mathrm{FWFT} / \mathrm{SI}$	$\begin{aligned} & \frac{\text { SCLK }}{} \\ & \hline \text { SREN } \\ & \text { SWEN } \\ & \text { FWFT/SI } \\ & \text { SDO } \end{aligned}$	IOSEL W OW MD PFM RDDR WDDR

NOTE:

1. In Dual mode, not all available signals will be used. Signals with a designation of 1 and 3 are not used.

D39-D30	D29-D20	D19-D10	D9-D0	Write to FIFO 0 and FIFO 2
D	C	B	A	
FIFO 2	FIFO 2	FIFO 0	FIFO 0	
D39-D30	D29-D20	D19-D10	D9-D0	
D	C	B	A	Read from
FIFO 2	FIFO 2	FIFO 0	FIFO 0	

(a) x20 INPUT to x20 OUTPUT

INPUT PORT BUS-WIDTH x20 OUTPUT PORT BUS-WIDTH x10

IW	OW
H	L

1st Read from FIFO 0 and FIFO 2

2nd Read from FIFO 0 and FIFO 2
b) $\mathbf{x} 20$ INPUT to $\times 10$ OUTPUT

1st Write to FIFO 0 and FIFO 2

2nd Write to FIFO 0 and FIFO 2

INPUT PORT BUS-WIDTH x10 OUTPUT PORT BUS-WIDTH x10

IW	OW
L	L

2nd Read from FIFO 0 and FIFO 2
(c) x10 INPUT to x10 OUTPUT

INPUT PORT BUS-WIDTH x10 OUTPUT PORT BUS-WIDTH x20

IW	OW
L	H

Read from FIFO 0 and FIFO 2
(d) x10 INPUT to $\mathbf{x} 20$ OUTPUT

SIGNAL DESCRIPTIONS

INPUTS:
 DATA INPUT BUS (D[39:0])

The data inputbusses are 10 bits wide in Quad mode and 20 or 10-bits wide in Dual mode. In Quad mode, D[9:0] are data inputs for FIFO0, D[19:10] are forFIFO1, D[29:20] are for FIFO2, and D[39:30] are for FIFO3. In Dual mode, D[19:0] are data inputs for FIFO0 and D[39:20] are for FIFO2forthe20-bit wide data bus. $\mathrm{D}[9: 0]$ are data inputs for FIFOO and $\mathrm{D}[29: 20]$ are data inputs for FIFO2 for the 10-bit wide data bus.

MASTER RESET ($\overline{\text { MRS }}$)

There is a single master reset available for all internal FIFOs in this device. A master reset is initiated whenever the $\overline{\mathrm{MRS}}$ input is takentoaLOW state. This operation sets the internal read and write pointers of all FIFOs to the firstlocation in memory. The programmable almostempty flag will go LOW and the almost full flags will go HIGH.

If FWFT/SI signal is LOW during master reset then IDT Standard mode is selected. This modeutilizes the empty and full status flags from the $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ and $\overline{F F} / \bar{R}$ dual-purpose pin. During master reset, all empty flags will be setto LOW and all full flags will be set to HIGH.

If FWFT/SI signal is HIGH during master reset, then the First Word Fall Through mode is selected. This mode utilizes the input read and output ready status flags from the $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ and $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$ dual-purpose pin. During master reset, all input ready flags will be set to LOW and all output ready flags will be set to HIGH.

All device configuration pins such as MD, OW, IW, WDDR, RDDR, IOSEL, PFM, FSEL[1:0] andFWFT/SI need to be defined before the master resetcycle. During a master resetthe output registers are initializedto all zeros. Ifthe output enables are LOW during master reset, then the output bus will be LOW. If the output enable(s) are HIGH during master reset, then the output bus will be in high-impedance. $\overline{R C S}$ has no affect on the data outputs during master reset. If the output width OW is configuredtox10in Dual mode, then the unused outputs Q[19:10] and Q[39:30] will be in high-impedance. A master reset is required afterpowerup before a write operationto any FIFO cantake place. Master reset is an asynchronous signal and thus the read and write clocks can be freerunning or idle during master reset. See Figure 10, Master Reset Timing, for the associatedtiming diagram.

PARTIAL RESET ($\overline{\operatorname{PRS}} 0 / 1 / 2 / 3$)

A partial resetis a means by whichthe user can resetboththe read and write pointers of each individual FIFO inside the device without changing the FIFO's configuration. There are four dedicated partial resetsignals (two in Dual mode) thateach correspondtoan individual FIFO. There are no restrictions as to when partial reset can be performed in either operating modes.

During partial reset, the internal read and write pointers are set to the first location in memory, $\overline{\text { PAE goes LOW and PAF goes HIGH. Whichever timing }}$ modewas activeatthe time of Partial Resetwill remain active afterPartial Reset. If IDT Standard Mode is active, then $\overline{\mathrm{FF}}$ will go HIGH and $\overline{\mathrm{EF}}$ will go LOW. If the First Word Fall Through mode is active, then $\overline{\mathrm{OR}}$ will go HIGH and $\overline{\mathrm{R}}$ will goLOW.

Following Partial Reset, all values held in the offset registers remain unchanged. The output registers are initialized to all zeros. All other configurations set up during master reset remain unchanged. $\overline{\mathrm{PRS}}$ is an asynchronous signal. See Figure 11, Partial Reset Timing, forthe associated timingdiagram.

FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI)

This is a dual purposepin. During master reset, the state of theFWFT/Sl input determines whether the device will operate in IDTStandardmode orFirstWord Fall Through (FWFT) mode.

IfFWFT/SI is LOW before the falling edge of master reset, then IDT Standard mode will be selected. This mode uses the Empty Flag (EF) to indicate whether or not there are any words present in the FIFOs'memory. It also uses the Full Flag ($\overline{\mathrm{FF}}$) to indicate whether or not the FIFOs' memory has any free space for writing. InIDT Standard mode, every word read from the FIFOs, including the first, mustbe requestedusingthe Read Enable ($\overline{\mathrm{REN}})$, ReadChipSelect $(\overline{\mathrm{RCS}})$ and RCLK.

IfFWFT/SI isHIGHbeforethefalling edge of master reset, then FWFT mode will be selected. This mode uses Output Ready ($\overline{\mathrm{OR}) \text { to indicate whetherornot }}$ there is validdata in the output register. It also uses Input Ready ($\overline{\mathrm{R}})$ to indicate whetherornottheFIFO's memory has any free spacefor writing. Inotherwords, they are the inverse of the empty and fullflags. IntheFWFT mode, the first word written to an empty FIFO goes directly to data outputs after three RCLK rising edges, provided thatthefirstRCLKmeets thetSKEw parameter. There may be a one RCLK cycle delay if tSKEW is not met. $\overline{R E N}$ and $\overline{R C S}$ do not need to be enabled. Subsequent words must be accessed using the $\overline{\operatorname{REN}}, \overline{\mathrm{RCS}}$, and RCLK.

ThestateoftheFWFT/Slinputmustbekeptatthepresentstatefortheminimum of the reset recovery time (tRSR) after master reset. After this time, the FWFT/ Slacts as a serial inputforloading $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ offsets intothe programmable offsetregisters. The serial inputisused inconjunction withSCLK, SWEN, $\overline{\text { SREN }}$, and SDO to access the offset registers. Serial programming using the FWFT/ SI pin functions the same way in both IDT Standard and FWFT modes.

WRITE CLOCK (WCLK0/1/2/3)

There are a possible total offour write clocks (ortwo in Dual mode) available in this device depending on the mode selected, each corresponding to the individual FIFOs inmemory. A write can be initiated onthe rising (orfalling) edge of theWCLKinput. If the write double data rate(WDDR) mode pin is tied HIGH, data will be written on boththe rising and falling edge ofWCLK0/1/2/3, provided that $\overline{\mathrm{WEN}} 0 / 1 / 2 / 3$ and $\overline{\mathrm{WCS}} 0 / 1 / 2 / 3$ are enabled on the rising edge of WCLK $0 /$ 1/2/3. IfWDDR istiedLOW, data will be written only onthe risingedge ofWCLKO/ $1 / 2 / 3$ provided that $\overline{W E N} 0 / 1 / 2 / 3$ and $\overline{W C S} 0 / 1 / 2 / 3$ are enabled. Each write clock is completely independentfrom the others.
Datasetup and holdtimes mustbemetwith respecttotheLOW-to-HIGH(and HIGH-to-LOW inDDR) transition of the write clock. It is permissible to stop the write clocks, for asynchronous operations. Note that while the write clocks are idle, the $\overline{\mathrm{FF}} 0 / 1 / 2 / 3$ and $\overline{\mathrm{PAF}} 0 / 1 / 2 / 3$ flags will not be updated unless the port is operating in asynchronous timing mode ($\mathrm{PFM}=0$). The write clocks can be independentor coincident with one another. InDual mode, the unused clocks (WCLK1 and WCLK3) should be tied to GND.

WRITE ENABLE (WEN0/1/2/3)

There are a total of four write enables (or two in Dual mode) available inthis device depending on the mode selected, one for each individual FIFO. When the writeenableinputisLOW onthe risingedge ofWCLKinsingledata ratemode, data is loaded on the rising edge of every WCLK cycle, provided the device is notfull and the write chip select $(\overline{\mathrm{WCS}})$ is enabled. The setup and hold times are referenced with respect to the rising edge of WCLK only. When the write enable input is LOW on the rising edge of WCLK in double data rate, data is loaded into any of the FIFOs on the rising and falling edge of every WCLK cycle, provided the device is not full and the write chip select $(\overline{\mathrm{WCS}})$ is enabled on the
rising edge ofWCLK. Inthis mode, the datasetup and holdtimesare referenced with respect to the rising and falling edge of WCLK. Note that $\overline{W E N}$ and $\overline{W C S}$ are sampled only on the rising edge of WCLK in either data rates.

Data is stored inthe FIFOs' memory sequentially and independently of any ongoing read operation. Whenthe writeenables or write chip selects are HIGH, no new data is written into the corresponding FIFO on eachWCLK cycle. Each write enable operates independently of the others. In Dual mode, the unused write enables ($\overline{\mathrm{WEN}} 1$ and $\overline{\mathrm{WEN}} 3$) should be tied to Vcc.

WRITE CHIP SELECT ($\overline{\mathrm{WCS}} 0 / 1 / 2 / 3$)

There are a total of four write chip selects (or two in Dual mode) available inthis device depending on the mode selected, one for each individual FIFO. The write chip selects disables all data bus inputs ifitis held HIGH. To perform normal writeoperations, the writechip selectmustbeenabled, (held LOW). The four write chip selects are completely independent of one another. When the write chip select is LOW on the rising edge of WCLK in single data rate mode, data is loaded on the rising edge of every WCLK cycle, provided the device is not full and the write enable ($\overline{\mathrm{WEN}})$ of the corresponding FIFO is LOW.

Whenthe write chip select is LOW onthe rising edge ofWCLKin double data rate mode, data is loaded into any of the FIFOs on the rising and falling edge of every WCLKcycle, provided the device is notfull and the write enable (VEN) of the corresponding FIFO is LOW on the rising clock edge.

When the write chip select is HIGH onthe rising edge of WCLKin single data rate mode, the write port is disabled and no words are written into the FIFO memory, ontherisingedge ofWCLK, evenifWENisLOW. Ifthe writechipselect is HIGH on the rising edge of WCLK in double data rate mode, the write port is disabled andno words are written intothe FIFO memory on the rising orfalling edge of WCLK, even if $\overline{W E N}$ is LOW. Note that $\overline{W C S}$ is sampled on the rising edge of WCLK only in either data rate. In Dual mode, the unused write chip selects ($\overline{\mathrm{WCS}} 1$ and $\overline{\mathrm{WCS}} 3$) should be tied to VCC.

WRITE DOUBLE DATA RATE (WDDR)

When the write double data rate (WDDR) pin is HIGH, the write port will be set to double data rate mode. In this mode, all write operations are based on the rising and falling edge of the write clocks, provided that write enables and writechipselects areLOW forthe rising clockedges. In double data rate the write enable signals are sampled with respectto the rising edge of write clock only, and a word will be written to both the rising and falling edge of write clock regardless of whether or not write enable is active on the falling edge of write clock.

When WDDR is LOW, the write port will be set to single data rate mode. In this mode, all write operations are based on only the rising edge of the write clocks, provided that write enables and write chip selects are LOW during the rising edge of write clock. This pin should be tied HIGH or LOW and cannot toggle.

READ CLOCK (RCLK0/1/2/3)

There are a total of four read clocks (or two in Dual mode) available in this device depending on the mode selected, each corresponding to the individual FIFOs in memory. A read can be initiated on the rising (or falling) edge of the RCLK input. If the read double data rate (RDDR) mode pin is tied HIGH, data will be read on both the rising and falling edge of $\mathrm{RCLK} 0 / 1 / 2 / 3$, provided that $\overline{\operatorname{REN}} 0 / 1 / 2 / 3$ and $\overline{\mathrm{RCS}} 0 / 1 / 2 / 3$ are enabled on the rising edge of RCLK0/1/2/ 3. If RDDR is tied LOW, data will be read only on the rising edge of RCLK0/1/ $2 / 3$ provided that $\overline{\operatorname{REN}} 0 / 1 / 2 / 3$ and $\overline{\mathrm{RCS}} 0 / 1 / 2 / 3$ are enabled. Each read clock is completely independent from the others.

There is an associated data accesstime(ta)for the data to be read out of the FIFOs. It is permissible to stop the read clocks. Note that while the read clocks
areidle, the $\overline{\mathrm{EF}} / 0 / 1 / 2 / 3$ and $\overline{\mathrm{PAE}} 0 / 1 / 2 / 3$ flags will not be updated unless the part is operating in asynchronoustiming mode(PFM=0). The write and read clocks can be independent or coincident. In Dual mode, the unused clocks (RCLK1 and RCLK3) should be tied to GND.

READ ENABLE ($\overline{\operatorname{REN}} 0 / 1 / 2 / 3$)

There are a total of four read enables (or two in Dual mode) available inthis device depending onthe mode selected, oneforeach individual FIFOs. When the readenableinputisLOW ontherisingedge of RCLKinsingle dataratemode, data will be read on the rising edge of every RCLK cycle, provided the device is not empty and the read chip select ($\overline{\mathrm{RCS}})$ is enabled. The associated data access time (tA) is referenced with respect to the rising edge of RCLK. When the read enable input is LOW on the rising edge of WCLK in double data rate mode, data will be read on the rising and falling edge of every RCLK cycle, provided the device is not empty and $\overline{\mathrm{RCS}}$ is enabled. In this mode, the data accesstimes are referenced with respecttothe rising andfalling edges of RCLK. Note that $\overline{R E N}$, and $\overline{R C S}$ are sampled only on the rising edge of RCLKineither datarate.

Data read from the FIFO's memory sequentially and independently of any ongoing write operation. When the read enables or readchip selects areHIGH, no new data is read on each RCLK cycle. Each read enable operates independently of the others.
To preventreading from anempty FIFO intheIDTStandardmode, theempty flag of each FIFO will go LOW with respect to RCLK, when the total number of words in the FIFO has been read, thus inhibiting further read operations. Upon the completion of a valid write cycle, the empty flag will go HIGH with respect to RCLKtwo cycles later, thus allowing another read to occursimilarly,forFWFT mode, the output ready flag of each FIFO will go HIGH with respect to RCLK when the total number of words in the FIFO has been read out. In Dual mode, the unused read enables ($\overline{\operatorname{REN}} 1$ and $\overline{\mathrm{REN}} 3$) should be tied to Vcc.

READ CHIP SELECT ($\overline{\operatorname{RCS}} 0 / 1 / 2 / 3$)

There are a total of four read chip selects (or two in Dual mode) available in this device, each corresponding to an individual FIFO. The read chip select inputs provide synchronous control of the read port. When the read chip select is held LOW, the next rising edge of the corresponding RCLK will enable the outputbus. Whenthe readchipselectgoesHIGH, the nextrising edge of RCLK will send the output bus into high-impedance and prevent that RCLK from initiating a read, regardless of the state of $\overline{R E N}$. During a master or partial reset the read chip select inputhas no effect on the outputbus-output enable is the only inputthatprovides high-impedance control oftheoutputbus. Ifoutputenable is LOW, the data outputs will be active regardless of readchip select until the first rising edge of RCLK after a reset is complete. Afterwards if read chip select is HIGH the data outputs will go to high-impedance. Each read chip select is completely independent of the others.

The read chipselectinputs do notaffecttheupdating of the flags. Forexample, whenthe first word is written to any/all empty FIFOs, theempty flags will still go from LOW to HIGH based on a rising edge of the RCLK, regardless of the state of the read chip select inputs. Also, when operating the FIFO in FWFT mode the first word written to any/all empty FIFOs will still be clocked through to the outputbus on the third rising edge of RCLK, regardless of the state of read chip selectinputs, assuming thatthetSKEW parameterismet. Forthis reasonthe user should pay extra attention to the read chip selects when a data word is written to any/all empty FIFOs in FWFT mode. If the read chip select inputs are HIGH when an empty FIFO is written into, the first word will fall through to the output register but will not be available on the outputs because they are in highimpedance. The user mustenable read chip select onthe rising edge of RCLK while disabling $\overline{R E N}$ to access this first word. In Dual mode, the unused read
chip selects($\overline{\mathrm{RCS}} 1$ and $\overline{\mathrm{RCS}} 3$) should betiedto Vcc. Referto Figures 23 and 24, Read Cycle and Read ChipSelectfor the associated timing diagrams.

READ DOUBLE DATA RATE (RDDR)

When the read double data rate (RDDR) pin tied HIGH, the read port will be set to double data rate mode. In this mode, all read operations are based on the rising and falling edge of the read clocks, provided that read enables and read chip selects are LOW. In double data rate the read enable signals are sampled with respect to the rising edge of read clock only, and a word will be read from both the rising and falling edge of read clock regardless of whether or not read enable and read chip select are active on the falling edge of read clock.
When RDDR is tied LOW, the read portwill be setto single data rate mode. In this mode, all read operations are based on only the rising edge of the read clocks, provided that read enables and read chip selects are LOW during the risingedge of readclock. This pinshould betied HIGH orLOW and cannottoggle before or after master reset.

OUTPUTENABLE ($\overline{\text { (EE }} 0 / 1 / 2 / 3$)

There are total of four asynchronous output enables (two in Dual mode) available inthis device, each correspondingto an individual FIFO in memory. When the outputenable inputs are LOW, the outputbus of each individual FIFO becomes active and drives the data currently in the output register. When the outputenable inputs are HIGH, the outputbus of each individual FIFO goes into high-impedance. Duringmasterorpartial resettheoutputenable is the only input that can place the outputdata bus into high-impedance. During resetthe read chip selectinputhas no effect onthe outputdatabus. Each outputenable input is completely independentfrom the others. In Dual mode, the unused output enables ($\overline{\mathrm{OE}} 1$ and $\overline{\mathrm{OE}} 3$) should be tied to Vcc.

I/O SELECT (IOSEL)

The inputs and outputs of this device can be configured for eitherLVTTL or HSTL/eHSTL operation. Ifthe IOSELpinis HIGH during master reset, then all applicable LVTTL or HSTL signals will be configured for HSTL/eHSTL operating voltage levels. To select between HSTL or eHSTL VreF must be drivento 1.5 V or 1.8 V respectively. Ifthe IOSEL pinis LOW during masterreset, then all applicable LVTTL or HSTL programmable pins will be configured for LVTTL operating voltage levels. In this configuration VREF should be set to GND. This pin should be tied HIGH orLOW and cannottoggle before or after master reset. Please refertotable 5for alistofLVTTL/HSTLeHSTLprogrammablepins.

POWER DOWN (PD)

This device has a power down feature intended for reducing power consumptionfor HSTL/eHSTL configured inputs when the device is idlle fora long period of time. By entering the power down state certain inputs can be disabled, thereby significantly reducing the powerconsumption of the part. All WENand $\overline{\text { EENs signalsmustbedisabledforaminimumoffourWCLK and RCLK }}$ cycles before activating the power down signal. The power down signal is asynchronous andneeds to beheld LOW throughoutthe desired powerdown time. Duringpowerdown, the following conditionsforthe inputs/outputssignals are:

- All data in FIFO(s) memory are retained.
- All data inputs become inactive.
- All write and read pointers maintain their last value before power down.
- All enables, chip selects, and clockinputpins become inactive.
- All data outputs become inactive and enter high-impedance state.
- All flag outputs will maintain their current states before power down.
- All programmable flag offsets maintaintheirvalues.
- All echo clocks and enables will become inactive and enter highimpedancestate.
- The serial programming and JTAG port will become inactive and enter high-impedance state.
- All setup and configuration CMOS static inputs are not affected, as these pins are tied to a known value and do not toggle during operation.
Allinternal counters, registers, and flags will remain unchanged and maintain their currentstate priorto powerdown. Clockinputs can be continuous andfreerunning during power down, but will have no affect on the part. However, it is recommended that the clock inputs be low when the powerdown is active. To exitpowerdown state and resume normal operations, disablethe powerdown signal bybringingitHIGH. Theremustbea minimum of 1μ swaitingperiod before read and write operations can resume. The device will continue from where it had stopped and no form of resetis requiredafter exiting powerdownstate. The power downfeature does not provide any power savings when the inputs are configuredforLVTTLoperation. However, itwill reducethe currentfor//Os that are not tied directly to Vcc or GND. See Figure 35, Power Down Operation, forthe associatedtiming diagram.

SERIAL CLOCK (SCLK)

The serial clock is used to load and read data in the programmable offset registers. Datafromthe serial inputsignal (FWFT/SI) canbeloaded intothe offset registers on the rising edge of SCLK provided that the serial write enable (SWEN) signal is LOW. Data can be readfrom the offset registers via the serial dataoutput(SDO) signal onthe rising edge ofSCLK provided thatSRENisLOW. The serial clock can operate at a maximum frequency of 10 MHz .

SERIAL WRITE ENABLE ($\overline{\text { SWEN }}$)

The serial write enable inputis an enable usedforserial programming of the programmable offset registers. It is used in conjunction with the serial input (FWFT/SI) and serial clock (SCLK) when programming the offset registers. When the serial write enable is LOW, data at the serial inputis loaded into the offsetregister, one bitfor eachLOW-to-HIGH transition of SCLK. Whenserial write enable is HIGH, the offset registers retain the previous settings and no offsets are loaded. Serial write enablefunctions the same way inboth Standard IDT and FWFT modes. See Figure 29, Loading of Programmable Flag Registers, for the timing diagram.

SERIAL READ ENABLE ((SREN)

The serial read enable input is an enable used for reading the value of the programmableoffsetregisters. Itisused in conjunction with the serial dataoutput (SDO) and serial clock (SCLK) when reading the offset registers. When the serial read enable is LOW, data at the serial data output can be read from the offsetregister, one biffor each LOW-to-HIGH transition ofSCLK. Whenserial readenable is HIGH, the reading of the offsetregisters will stop. Wheneverserial readenable (SREN) is activated (LOW) values inthe offsetregisters are copied directly into aserial scan outregister. SREN mustbe keptLOW in orderto read the entire contents ofthe scan outregister.Ifatany pointSRENistoggled HIGH, another copy function from the offsetregisterto the serial scan out register will occur the nexttime $\overline{\text { SREN }}$ is enabled (LOW). Serial read enable functions the same way in both IDT Standard and FWFT modes. See Figure 30, Reading of Programmable Flag Registers, for the timing diagram.

OUTPUTS:

DATA OUTPUT BUS (Q[39:0])

The data outputbusses are 10bits wide in Quad mode and 20 or 10-bits wide in Dual mode. In Quad mode, Q[9:0] are data outputs for FIFO0, Q[19:10] are forFIFO1, Q[29:20] are forFIFO2, and Q[39:30] are forFIFO3. In Dual mode, Q[19:0] are data outputs for FIFOO and Q[39:20] are for FIFO2 for the 20-bit wide data bus. Q[9:0] are data outputsforFIFOO and Q[29:20] are data outputs for FIFO2 for the 10-bit wide data bus.

EMPTY/OUTPUTREADYFLAG(EF/0/1/2/3)

There are four empty/outputready flags (two in Dual mode) available in this device, each corresponding to the individual FIFOs in memory. This is adualpurpose pin whose function is determined based on the state of the FWFT/SI pinduring masterreset. Inthe IDTStandardmode, the emptyflags are selected. When an individual FIFO is empty, its empty flag will go LOW, inhibiting further read operations from that FIFO. When the empty flag is HIGH , the individual FIFO is notempty and valid read operations can be performed. See Figure 18, Read Cycle, Output Enable and Empty Flag Timing, for the relevant timing information. Alsosee Table 3, Status Flags for IDT StandardModefor the truth table ofthe empty flags.

InFWFT mode, the outputready flags are selected. Output readyflags ($\overline{\mathrm{OR}})$ go LOW atthe same time that the firstword writtento an empty FIFO appears on the outputs, whichis a minimum oftwo read clock cycles provided the RCLK and WCLKmeets the tSkEW parameter (See Table6-TsKEw Measurement). $\overline{\text { OR stays LOWafterthe RCLKLOW-to-HIGHtransitionsthatshiftsthelastword }}$ from the FIFO memory to the outputs. $\overline{\text { OR }}$ goes HIGH when another read operation is performed, indicating the last word was read. The previous data stays atthe outputs, furtherdata reads are inhibited until $\overline{\text { OR goes LOW again }}$ and a new word appears on the bus. See Figure 22, Read Timing and Output Ready Flag, for the relevant timing information. Also see Table 4, Status Flags forFWFTModefor the truth table of the empty flags. To prevent reading in the FWFT mode, the output ready flag of each FIFO will go HIGH with respect to RCLK, when the total number of words has been read out of the FIFO, thus inhibiting furtherread operations. Uponthe completion of a valid write cycle, the output ready flag will go LOW with respect to RCLK three cycles later, thus indicating another read has occurred.

The empty/output ready flags are synchronous and updated on the rising edge of RCLK. In IDT Standard mode, the flags are double register-buffered outputs. In FWFT mode, the flags are triple register-buffered outputs. Each empty flag operates independently of the others and always indicates the respective FIFO'sstatus.

FULLINPUT READY FLAG ($\overline{\mathrm{FF}} / \overline{\mathrm{R}} / 0 / 1 / 2 / 3$)

There are four fullinput ready flags (two in Dual mode) available in this device, each corresponding to the individual FIFOs in memory. This is adualpurpose pin whose function is determined based on the state of the FWFT/SI pinduring master reset. Inthe IDT Standard mode, the full flags are selected. When an individual FIFO is full, its full flags will go LOW after the rising edge of WCLKthatwrotethe lastword, thus inhibitingfurtherwrite operations tothe FIFO. Whenthefull flagis HIGH, the individual FIFO is notfull and valid write operations can be performed. See Figure 11, Write Cycle and Full Flag Timing for the associatedtiming diagram. Alsosee Table 4, Status Flags for FWFTModefor the truthtable of the full flags.
InFWFTmode, the inputready flags are selected. Inputready flags goLOW whenthere is adequate memory space inthe FIFOs forwriting indata. The input readyflags goHIGH afterthe rising edge ofWCLKthatwrotethe lastword, when there are nofree spaces availablefor writing indata. See Figure 16, Write Cycle
and Output Ready Timing, forthe associated timing information. Alsosee Table 4, Status FlagsforFWFTModeforthe truthtable ofthe full flags. The inputready status not only measures the contents ofthe FIFOs memory, butalso counts the presence of a word in the outputregister. Thus, in FWFT mode, the total number of writes necessary to make \bar{R} LOW is one greater than needed to assert $\overline{F F}$ in IDT Standard mode.
$\overline{\text { FF } / \bar{R}}$ is synchronous and updated on the rising edge of WCLK. FF//R are double register-buffered outputs. Each flag operates independently of the others. To prevent data overflow in the IDTStandard mode, the full flag of each FIFO will go LOW with respecto WCLK, whenthe maximum number of words hasbeen written intothe FIFO, thus inhibiting furtherwrite operations. Uponthe completion of a valid read cycle, the full flag will go HIGH with respectto WCLK two cycles later, thus allowing another write to occur.
TopreventdataoverflowintheFWFTmode, the inputready flag of each FIFO will go HIGH with respectto WCLK, when the maximum number of words has been written into the FIFO, thus inhibiting further write operations. Upon the completion of a valid read cycle, the input ready flag will go LOW with respect to WCLK two cycles later, thus allowing another write to occur.

PROGRAMMABLE ALMOSTEMPTYFLAG($\overline{\text { PAE } 0 / 1 / 2 / 3) ~}$

There are four programmable almost empty flags (two in Dual mode) available in this device, each corresponding to an individual FIFO in memory. The programmablealmostemptyflagis an additional statusflagthatnotifies the user when the FIFO memory is near empty. The user may utilize this feature as an early indicator as to when the FIFO will become empty. In IDT Standard mode, PAE will go LOW when there are n words or less in the FIFO. In FWFT mode, the $\overline{\text { PAE }}$ will go LOW when there are $\mathrm{n}-1$ words orless in the FIFO. The offset " n " is the empty offset value. The default setting for this value is stated in Table 2. There are four internal FIFOs hence four $\overline{\text { PAE offsetvalues, }(\mathrm{n}), \mathrm{n} 1 \text {, }}$ n 2 , and n 3).
Therearetwotiming modes availableforthe $\overline{\overline{A E E}}$ flags, selectable by the state of the Programmable Flag Mode (PFM) pin. If PFM is tied HIGH, then synchronoustiming mode is selected. IfPFM istied LOW, then asynchronous timing mode is selected. In synchronous configuration, the PAEflagis updated onthe rising edge of RCLK. In asynchronous PAE configuration, the PAEflag is asserted LOW on the LOW-to-HIGH transitions ofthe Read Clock (RCLK). PAE is resetto HIGH ontheLOW-to-HIGHtransitions oftheWriteClock(WCLK). See Figures 31 and 33, Synchronous and Asynchronous Programmable Almost-Empty Flag Timing, forthe relevanttiming information.
Each programmable almostemptyflag operates independently ofthe others.

PROGRAMMABLE ALMOST FULL FLAG ($\overline{\text { PAF }} 0 / 1 / 2 / 3$)

There arefour programmable almostfull flags (two in Dual mode) available in this device, each corresponding to the individual FIFOs in memory. The programmablealmostfull flagisanadditional statusflagthatnotifiestheuserwhen the FIFO memory is nearly full. The user may utilize this feature as an early indicator as to when the FIFO will notbe able to acceptany more data and thus prevent data from being dropped. In IDT Standard mode, if no reads are performed after master reset, PAF will go LOW after (D-m) (D meaning the density of the particulardevice) words are writtentothe FIFO. InFWFT mode, PAF will go LOW after (D+1-m) words are written to the FIFO. The offset " m " is the full offsetvalue. The default settingforthis value is stated in Table 2. There are four internal FIFOs hence four PAF offsetvalues, ($\mathrm{m} 0, \mathrm{~m} 1, \mathrm{~m} 2$, and m 3).
There aretwotiming modes availableforthe PAF flags, selectable by the state of the Programmable Flag Mode (PFM) pin. If PFM is tied HIGH, then synchronous timing mode is selected. IfPFM istied LOW, then asynchronous timing mode is selected. Insynchronous configuration, the PAF flagis updated on the rising edge of WCLK. In asynchronous PAF configuration, the PAF flag
is asserted LOW ontheLOW-to-HIGH transitions of the Write Clock (WCLK). PAF is resettoHIGH ontheLOW-to-HIGHtransitions of the ReadClock(RCLK). See Figure 31 and 33, Synchronous and Asynchronous Programmable Almost-Full FlagTiming (IDTStandardandFWFTmode), forthe relevanttiming information.

Each programmable almostfull flag operates independently of the others.

ECHO READ CLOCK (ERCLK0/1/2/3)

There are four echo read clock outputs (two in Dual mode) available in this device, each corresponding to their respective input read clocks in the FIFO. The echo read clock is a free-running clock output, that will always follow the RCLKinput regardless of the read enables and read chip selects. The ERCLK outputfollows the RCLK inputwith an associated delay. This delay provides the user with a more effective read clock source when reading data fromthe output bus. This is especially helpful athigh speeds when variables within the device may cause changes in the data access times. These variations in access time may be caused by ambienttemperature, supply voltage, ordevicecharacteristics.

Any variations effecting the data access time will also have a corresponding effect on theecho read clock outputproduced by the FIFO, therefore the echo read clockoutputleveltransitions should always be atthe same position intime relative to the data outputs. Note, that echo read clockis guaranteed by design tobe slowerthanthe slowest data outputs. Referto Figure 6, Echo Read Clock and Data Output Relationship, Figures 25, 26, and 27 Echo Read Clock and Read Enable Operation for timing information. Each echo read clock output operate independently of the others and transitions with respect to the data outputs of its FIFO.

NOTES:

1. REN is LOW.
2. tERCLK > tA, guaranteed by design.
3. Qslowest is the data output with the slowest access time, ta.
4. Time, to is greater than zero, guaranteed by design.

Figure 6. Echo Read Clock and Data Output Relationship

TABLE 6 - TSKEW MEASUREMENT

Data Port Configuration	Status Flags	TskEW Measurement	Datasheet Parameter
DDR Input to DDR Output	$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	Negative Edge WCLK to Positive Edge RCLK	tSKEW2
	$\overline{\mathrm{FF}} / \overline{\mathrm{I}}$	Negative Edge RCLK to Positive Edge WCLK	tSKEW2
	$\overline{\text { PAE }}$	Negative Edge WCLK to Positive Edge RCLK	tSKEW3
	$\overline{\text { PAF }}$	Negative Edge RCLK to Positive Edge WCLK	tSKEW3
DDR Input to SDR Output	$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	Negative Edge WCLK to Positive Edge RCLK	tSKEW2
	$\overline{\mathrm{FF}} / \overline{\mathrm{I}}$	Positive Edge RCLK to Positive Edge WCLK	tSKEW1
	$\overline{\text { PAE }}$	Negative Edge WCLK to Positive Edge RCLK	tSKEW3
	$\overline{\text { PAF }}$	Positive Edge RCLK to Positive Edge WCLK	tSKEW3
SDR Input to DDR Output	$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	Positive Edge WCLK to Positive Edge RCLK	tSKEW1
	$\overline{\mathrm{FF}} / \overline{\mathrm{I}}$	Negative Edge RCLK to Positive Edge WCLK	tSKEW2
	$\overline{\text { PAE }}$	Positive Edge WCLK to Positive Edge RCLK	tSKEW3
	$\overline{\text { PAF }}$	Negative Edge RCLK to Positive Edge WCLK	tSKEW3
SDR Input to SDR Output	$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	Positive Edge WCLK to Positive Edge RCLK	tSKEW1
	$\overline{\mathrm{FF}} / \overline{\mathrm{I}}$	Positive Edge RCLK to Positive Edge WCLK	tSKEW1
	$\overline{\text { PAE }}$	Positive Edge WCLK to Positive Edge RCLK	tSKEW3
	$\overline{\text { PAF }}$	Positive Edge RCLK to Positive Edge WCLK	tSKEW3

Figure 7. Standard JTAG Timing

SYSTEM INTERFACE PARAMETERS

Parameter	Symbol	Test Conditions	$\begin{aligned} & \text { IDT72T54242 } \\ & \text { IDT72T54252 } \\ & \text { IDT72T54262 } \end{aligned}$		
			Min.	Max.	Units
DataOutput	tDo ${ }^{(1)}$		-	20	ns
Data Output Hold	tDOH ${ }^{(1)}$		0	-	ns
Datalnput	tDS	$\begin{aligned} & \text { trise=3ns } \\ & \text { tfall }=3 \mathrm{~ns} \end{aligned}$	10	-	ns
	tD		10	-	

JTAG
AC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{Vcc}=2.5 \mathrm{~V} \pm 5 \%\right.$; Tcase $=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	Min.	Max.	Units
JTAG Clock InputPeriod	tTCK	-	100	-	ns
JTAG ClockHIGH	tTCKHIGH	-	40	-	ns
JTAG Clock Low	tTCKLOW	-	40	-	ns
JTAG Reset	tRST	-	50	-	ns
JTAG Reset Recovery	tRSR	-	50	-	ns

NOTE:

1. 50 pf loading on external output signals.

JTAG TIMING SPECIFICATIONS (IEEE 1149.1 COMPLIANT)

The JTAG test port in this device is fully compliantwiththe IEEE Standard TestAccess Port (IEEE 1149.1) specifications. Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to support the JTAG boundary scan interface. Note that IDT provides appropriate Boundary Scan Description Language program files for these devices.

The Standard JTAG interface consists of five basic elements:

- Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)
- Bypass Register (BYR)

The following sections provide a brief description of each element. For a completedescription refertothe IEEE Standard TestAccessPortSpecification (IEEE Std. 1149.1-1990).

The Figure below shows the standard Boundary-Scan Architecture

Figure 8. JTAG Architecture

TEST ACCESS PORT (TAP)

The TAP interface is a general-purpose port that provides access to the internal JTAG state machine. It consists offour inputports (TCLK, TMS, TDI, TRST) and one output port (TDO).

THETAPCONTROLLER

The TAP controller is a synchronous finite state machine that responds to TMS and TCLK signals to generate clock and control signals to the Instruction and Data Registers for capture and updating of data passed through the TDI serial input.

NOTES:

1. Five consecutive TCK cycles with TMS $=1$ will reset the TAP
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).
3. TAP controller must be reset before normal FIFO operations can begin.

Figure 9. TAP Controller State Diagram

Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram

All state transitions within the TAP controller occur at the rising edge of the TCLK pulse. The TMS signal level (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controllertakes precedence over the FIFO memory and must be reset after power up of the device. See TRST description for more details on TAP controller reset.

Test-Logic-Reset Alltestlogic is disabled inthis controller stateenabling the normal operation of the IC. The TAP controllerstate machine is designedinsuch a way that, no matterwhatthe initial state ofthe controlleris, the Test-Logic-Reset state can be entered by holding TMS athigh and pulsing TCK five times. This is the reason why the Test Reset (TRST) pin is optional.

Run-Test-Idle Inthis controller state, the test logic in the IC is active only if certaininstructions are present. For example, if an instruction activates the self test, then it will be executed when the controller enters this state. The testlogic in the IC is idles otherwise.

Select-DR-Scan This is a controller state where the decision to enter the Data Path or the Select-IR-Scan state is made.

Select-IR-Scan This is a controller state where the decision to enter the InstructionPathis made. TheControllercan returntotheTest-Logic-Resetstate otherwise.

Capture-IR Inthis controllerstate, the shift registerbank in the Instruction Register parallel loads a pattern of fixed values on the rising edge of TCK. The last two significant bits are always required to be "01".

Shift-IR In this controller state, the instruction register gets connected betweenTDI andTDO, andthe captured patterngetsshifted oneach risingedge of TCK. The instructionavailableonthe TDI pinisalso shifted intothe instruction register.
Exit1-IRThis is a controller state where a decisionto enter either thePauseIR state or Update-IR state is made.
Pause-IR This state is provided in order to allow the shifting of instruction register to be temporarily halted.
Exit2-DR This is a controller state where a decision to enter either the ShiftIR state or Update-IR state is made.

Update-IR Inthis controller state, the instruction inthe instruction register is latched in to the latch bank of the Instruction Register on every falling edge of TCK. This instruction also becomes the current instruction once it is latched.

Capture-DR Inthis controller state, the data is parallel loaded in to the data registers selected by the current instruction on the rising edge of TCK.

Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and Update-IR states in the Instruction path.

THE INSTRUCTION REGISTER

The Instruction registerallows an instruction to be shifted in serially into the processor at the rising edge of TCLK.

The Instruction is used to select the test to be performed, or the test data registerto be accessed, orboth. The instruction shifted intothe register is latched at the completion of the shifting process when the TAP controller is at UpdateIRstate.

The instruction register must contain 4 bit instruction register-based cells which can hold instruction data. These mandatory cells are located nearest the serial outputs they are the leastsignificant bits.

TEST DATA REGISTER

The TestData registercontains three test data registers: the TestBypass register, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. For a completedescription, refertotheIEEE Standard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

Test Bypass Register

The register is used to allow test data to flow through the device from TDI to TDO. Itcontainsasinglestage shiftregisterfor a minimumlengthinserial path. When the bypass register is selected by an instruction, the shift register stage is set to a logic zero on the rising edge of TCLK when the TAP controller is in the Capture-DR state.

The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

The Boundary-Scan Register

The Boundary Scan Register allows serial data TDI be loaded into or read out of the processor input/output ports. The Boundary Scan Register is a part of the IEEE 1149.1-1990 Standard JTAG Implementation.

The Device Identification Register

The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined through the TAP in response to the IDCODE instruction.

IDT JEDEC ID number is $0 \times B 3$. This translates to 0×33 when the parity is dropped in the 11-bit Manufacturer ID field.

For the IDT72T54242/72T54252/72T54262, the Part Number field containsthefollowing values:

Device	Part\# Field
IDT72T54242	4C5 (hex)
IDT72T54252	4C6 (hex)
IDT72T54262	4C7 (hex)

31 (MSB) $2827 \quad 1211$
Version (4 bits) OX0 Part Number (16-bit) Manufacturer ID (11-bit) O0B3 (hex) (LSB)

IDT72T54242/252/262 JTAG Device Identification Register

JTAG INSTRUCTION REGISTER

The Instruction register allows instructionto be serially inputintothe device when the TAP controller is in the Shift-IR state. The instruction is decoded to perform the following:

- Selecttest data registers that may operate whilethe instruction is current. The othertest data registers should not interfere with chip operation and the selected data register.
- Definetheserial testdata registerpaththatisusedtoshiftdatabetween TDI and TDO during data register scanning.
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode 16 different possible instructions. Instructions are decoded as follows.

Hex Value	Instruction	Function
0000	EXTEST	Testexternal pins
0001	SAMPLE/PRELOAD	Selectboundary scan register
0002	IDCODE	Selectschipidentification register
0003	CLAMP	Fix the output chains to scan chain values
0004	HI-IMPEDANCE	Putsall outputs inhigh-impedance state
0007	OFFSET READ	Read $\overline{\text { PAE }} / \overline{\text { PAF }}$ offset register values
0008	OFFSETWRITE	Write $\overline{\text { PAE } / \text { PAF offset registervalues }}$
000 F	BYPASS	Selectbypass register Private
		Several combinations are private (for IDT internal use). Do not use codes other than those identified above.

JTAG Instruction Register Decoding

The following sections provide a brief description of each instruction. For acompletedescription refertothe IEEE StandardTestAccessPortSpecification (IEEE Std. 1149.1-1990).

EXTEST

The required EXTEST instruction places the IC into an external boundarytestmode and selects theboundary-scan registerto be connected betweenTDI and TDO. During this instruction, the boundary-scan register is accessed to drive test data off-chip via the boundary outputs and receive test data off-chip via the boundary inputs. As such, the EXTEST instruction is the workhorse of IEEE. Std 1149.1, providing for probe-lesstesting of solder-jointopens/shorts and of logic clusterfunction.

SAMPLE/PRELOAD

The required SAMPLE/PRELOAD instruction allows the IC to remain in a normalfunctional mode andselectstheboundary-scan registertobeconnected between TDI and TDO. During this instruction, the boundary-scan registercan be accessed via a date scan operation, to take a sample of the functional data entering and leaving the IC. This instruction is also used to preloadtestdatainto the boundary-scan register before loading an EXTEST instruction.

IDCODE

Theoptional IDCODEinstructionallowsthe ICto remaininitsfunctional mode and selects the optional device identification registerto be connected between TDI andTDO. The device identification register isa32-bitshift registercontaining information regarding the IC manufacturer, device type, and version code. Accessing the device identification register does not interfere withthe operation ofthe IC. Also, access tothe device identification register should be immediately available, via a TAP data-scan operation, after power-up of the IC or after the TAP has been reset using the optional TRST pin or by otherwise moving to the Test-Logic-Resetstate.

CLAMP

The optional CLAMP instruction sets the outputs of an IC to logic levels determined by the contents of the boundary-scan register and selects theonebitbypass register to be connected between TDI and TDO. Before loading this instruction, the contents of the boundary-scan register can be preset with the SAMPLE/PRELOAD instruction. During this instruction, data can be shifted through the bypass register from TDI to TDO without affecting the condition of theoutputs.

HIGH-IMPEDANCE

The optional High-Impedance instruction sets all outputs (including two-state as well as three-state types) of an ICtoa disabled (high-impedance) state and selects the one-bit bypass register to be connected between TDI and TDO. During this instruction, data can be shifted throughthebypass registerfrom TDI to TDO withoutaffecting the condition of the IC outputs.

OFFSET READ

This instruction is an alternative to serial reading the offset registers for the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ flags. When reading the offset registers through this instruction, the dedicated serial programming signals mustbe disabled.

OFFSET WRITE

This instruction is an alternative to serial programming the offset registers for the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ flags. When writing the offset registers throughthis instruction, the dedicated serial programming signals mustbe disabled.

BYPASS

The required BYPASS instruction allows the IC to remain in a normal functional mode and selects the one-bit bypass register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the IC from TDI to TDO without affecting the operation of the IC.

NOTES:

1. $\overline{\mathrm{OE}}$ can be toggled during master reset. During master reset, the high-impedance control of the Qn data outputs are provided by $\overline{\mathrm{OE}}$ only.
2. RCLK(s), WCLK(s) and SCLK(s) can be free running or idle.
3. The state of these pins are latched when the master reset pulse is LOW.
4. JTAG flag should not toggle during master reset.
5. $\overline{\text { RCS }}$ and $\overline{\text { WCS }}$ can be HIGH or LOW until the first rising edge of RCLK after master reset is complete.
6. If Dual mode is selected, only the signals designated with a " 0 " or " 2 " are used.
7. If Dual mode is selected, outputs $\mathrm{Q}[19: 10]$ and $\mathrm{Q}[39: 30]$ are not used if outputs are configured to x 10 .

Figure 10. Master Reset Timing

NOTES:

1. This timing diagram shows the partial reset timing for a single FIFO. Each $\overline{\text { PRS }}$ is independent of the others.
2. During partial reset the high-impedance control of the Qn data outputs are provided by $\overline{\mathrm{OE}}$ only, $\overline{\mathrm{RCS}}$ can be HIGH or LOW until the first rising edge of RCLK after master reset.
3. If Dual mode is selected, outputs $\mathrm{Q}[19: 10]$ and $\mathrm{Q}[39: 30]$ are not used if outputs are configured to x 10 .

Figure 11. Partial Reset Timing

NOTES:

1. The timing diagram shown is for FIFO . FIFO1-3 exhibits the same behavior.
2. tskEw1 is the minimum time between a rising RCLK0 edge and a rising WCLK0 edge to guarantee that $\overline{F F} 0$ will go HIGH (after one WCLK0 cycle plus twFF). If the time between the rising edge of the RCLK0 and the rising edge of the WCLK0 is less than tskeww, then the FFO deassertion may be delayed one extra WCLK0 cycle. (See Table 6 - Tskew measurement).
3. $\overline{\mathrm{OE}}=\mathrm{LOW}$, and $\overline{\mathrm{WCS}} 0=\mathrm{LOW}$.
4. WCLKO must be free running for $\overline{\mathrm{FF}}$ to update.
5. | MD | IW | OW | WDDR | RDDR | FWFT/S |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | D / C | D / C | 0 | 0 | 0 |

Figure 12. Write Cycle and Full Flag Timing (Quad mode, IDT Standard mode, SDR to SDR)

Figure 13. Write Cycle and Full Fag Timing (Quad mode, IDT Standard mode, DDR to DDR)

Figure 14. Write Cycle and Full Fag Timing (Dual mode, IDT Standard mode, DDR to SDR, x10 In to x20 Out)

NOTES:

1. The timing diagram shown is for FIFOO. FIFO 2 exhibit the same behavior.
2. tsKEW2 is the minimum time between a a flling RCLKO edge and a rising WCLK0
3. tsKEW2 is the minimum time between a falling RCLK0 edge and a rising WCLKO edge to guarantee that $\overline{\text { FFO }}$ will go HIGH (after one WCLKO cycle plus twFF). If the time between the falling edge of the RCLK0 and the rising edge
of WCLK0 is less than tsKEW2, then FFO deassertion may be delayed one extra WCLKO cycle. (See Table 6 - TsKEw measurement). of WCLKO is less than tskew2, then $\overline{\mathrm{FF}} 0$ deassertion may be delayed one extra WCLKO cycle. (See Table 6 - TSKEw measurement).
$\overline{\mathrm{OE} 0} 0=\mathrm{LOW}, \overline{\mathrm{WCS}} 0=\mathrm{LOW}$, and $\overline{\mathrm{RCS}} 0=$ LOW.

Figure 15. Write Cycle and Full Fag (Dual mode, IDT Standard mode, SDR to DDR, x20 In to x10 Out)

Figure 16. Write Cycle and Output Ready Timing (Quad mode, FWFT mode, SDR to SDR)

NOTES:

1. The timing diagram shown is for FIFOO. FIFO1-3 exhibits the same behavior.
2. tsKEW1 is the minimum time between a rising WCLK0 edge and a rising RCLK0 edge to guarantee that $\overline{E F} 0$ will go HIGH (after one RCLK0 cycle plus treF). If the time between the rising edge of WCLKO and the rising edge of RCLKO is less than tsKEw1, then EF0 deassertion may be delayed one extra RCLKO cycle. (See Table 6 - TskEw measurement)..
3. First data word latency $=$ tskew $1+1^{*}$ TrCLK + tref.
4. $\mathrm{RCSO}=\mathrm{LOW}$.
5. RCLKO must be free running for $\overline{\mathrm{EF}}$ to update.
6. | MD | IW | OW | WDDR | RDDR | FWFT/SI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | D / C | D / C | 0 | 0 | 0 |

Figure 18. Read Cycle, Output Enable and Empty Flag Timing (Quad mode, IDT Standard mode, SDR to SDR)

Figure 19. Read Cycle, Output Enable and Empty Fag Timing (Quad mode, IDT Standard mode, DDR to DDR)

Figure 20. Read Cycle and Empty Fag Timing (Dual mode, IDT Standard mode, DDR to SDR, x20 In to x10 Out)

Figure 21. Read Cycle and Empty Flag Timing (Dual mode, IDT Standard mode, SDR to DDR, x10 In to x20 Out)

NOTES:

1. The timing diagram shown is for FIFO0. FIFO1-3 exhibit the same behavior.
2. tSKEW1 is the minimum time between a rising WCLKO edge and a rising RCLKO edge to guarantee that $\overline{\mathrm{EF}} 0$ will go HIGH (after one RCLKO cycle plus tref). If the time between the rising edge of WCLKO and the rising edge of RCLKO is less than tSKEw1, then EFO deassertion may be delayed one extra RCLKO cycle.
3. First data word latency $=$ tskew $1+1^{*}$ Trclk + tref.
4. $\overline{\mathrm{OE}} 0=$ LOW.
5. RCLKO must be free running for $\overline{\mathrm{EF}} 0$ to update.
6.

MD	IW	OW	WDDR	RDDR	FWFT/SI
1	D/C	D/C	0	0	0

Figure 24. Read Cycle and Read Chip Select (Quad mode, IDT Standard mode, SDR to SDR)

 WCLKO is less than tSKEW1, then the $\overline{\mathrm{R}} 0$ assertion may be delayed one extra WCLKO cycle. WCIKO is less than TSKEW3, then the $\overline{\mathrm{PAF}} \mathbf{F}$ deassertion may be delayed one extra WCLKO cycle $\mathrm{nO}=\overline{\mathrm{P}} \overline{\mathrm{AF}} 0$ Offset, $\mathrm{m0}=\overline{\mathrm{PAF}} 0$ offset and $\mathrm{D}=$ maximum FIFO depth
5. $\overline{\mathrm{OE}}=\mathrm{LOW}$.

MD	IW	OW	WDDR	RDDR	PFM	FWFT/SI
1	D/C	D/C	0	0	1	1

Figure 25. Read Cycle and Read Chip Select Timing (Quad mode, FWFT mode, SDR to SDR)

Figure 26. Echo Read Clock and Read Enable Operation (Quad mode, IDT Standard mode, DDR to DDR)

NOTE:

1. The timing diagram shown is for FIFOO. FIFO1-3 exhibit the same behavior.
2. The O/P Register is the internal output register. Its contents are available on the Qn output bus only when $\overline{\mathrm{RCSO}} \overline{\mathrm{and}} \overline{\mathrm{OE}} \mathbf{0}$ are both active, LOW, that is the bus is not in HighImpedance state.
3. $\overline{\mathrm{OE} O}$ is LOW.

Cycle:
a\&b. At this point the FIFO is empty, $\overline{\mathrm{OR}} \mathbf{0}$ is HIGH.
RCSO and RENO are both disabled, the output bus is High-Impedance.
c. Word $W n+1$ falls through to the output register, $\overline{\mathrm{OR}} 0$ goes active, LOW.
$\overline{\mathrm{RCS}} 0$ is HIGH, therefore the Qn outputs are High-Impedance. EREN0 goes LOW to indicate that a new word has been placed on the output register.
d. ERENO goes HIGH, no new word has been placed on the output register on this cycle.
e. No Operation.
f. $\overline{\operatorname{RCS}} 0$ is LOW on this cycle, therefore the Qn outputs go to Low-Impedance and the contents of the output register $(\mathrm{W} n+1)$ are made available.

NOTE: In FWFT mode is important to take RCS0 active LOW at least one cycle ahead of RENO, this ensures the word ($\mathrm{W} n+1$) currently in the output register is made available for at least one cycle.
g. REN0 goes active LOW, this reads out the second word, $\mathrm{Wn}+2$.

ERENO goes active LOW to indicate a new word has been placed into the output register.
h. Word $W n+3$ is read out, ERENO remains active, LOW indicating a new word has been read out.

NOTE: $\mathrm{W}+\mathrm{3}$ is the last word in the FIFO.
i. This is the next enabled read after the last word, Wn+3 has been read out. $\overline{\mathrm{OR}} 0$ flag goes HIGH and $\overline{\mathrm{ERENO}}$ goes HIGH to indicate that there is no new word available.
4. $\overline{O E} 0$ is LOW, WDDR $=$ LOW, and RDDR $=$ LOW.

Figure 27. Echo RCLK and Echo Read Enable Operation (Quad mode, FWFT mode, SDR to SDR)

NOTES:

1. The timing diagram shown is for FIFOO . FIFO1-3 exhibit the same behavior.
2. The ERENO output is LOW if $\overline{\mathrm{CCS}} 0$ and $\overline{\mathrm{REN}} 0$ are LOW on the rising RCLKO edge provided that the FIFO is not empty. If the FIFO is empty, $\overline{\mathrm{EREN}} 0$ will go HIGH to indicate that there is no new word available.
3. The ERENO output is synchronous to RCLKO.
4. $\overline{\mathrm{OE}}=\mathrm{LOW}$.
5. | MD | IW | OW | WDDR | RDDR | FWFT/SI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | D / C | D / C | 0 | 0 | 0 |

Figure 28. Echo Read Clock and Read Enable Operation (Quad mode, IDT Standard mode, SDR to SDR)

Figure 30. Reading of Programmable Fag Registers (IDT Standard and FWFT modes)

NOTES:

1. The timing diagram shown is for FIFO0. FIFO1-3 exhibit the same behavior.
2. $\mathrm{m0}=\overline{\mathrm{PAF}} 0$ offset
3. $\mathrm{D}=$ maximum FIFO depth. For density of FIFO with bus-matching, refer to the bus-matching section on page 19
4. tskew3 is the minimum time between a rising RCLKO edge and a rising WCLK0 edge to guarantee that $\overline{\text { PAF0 will go HIGH (after one WCLK0 cycle plus tPAFS). If the time }}$ between the rising edge of RCLKO and the rising edge of WCLKO is less than tsKEW2, then the $\overline{\mathrm{PAF}} \mathbf{0}$ deassertion time may be delayed one extra WCLKO cycle.
5. $\overline{\mathrm{PAF}} 0$ is asserted and updated on the rising edge of WCLKO only.
6. $\overline{\mathrm{RCS}} 0=\mathrm{LOW}$, and $\overline{\mathrm{WCS}} 0=\mathrm{LOW}$.
7. | MD | IW | OW | WDDR | RDDR | PFM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | D/C | D/C | 0 | 0 | 1 |

Figure 31. Synchronous Programmable Almost-Full Flag Timing (Quad mode, IDT Standard and FWFT mode, SDR to SDR)

NOTES:

1. The timing diagram shown is for FIFO0. FIFO1-3 exhibit the same behavior.
2. $\mathrm{n} 0=\overline{\mathrm{PAE}} 0$ offset.
3. For IDT Standard mode
4. For FWFT mode.
5. tskewz is the minimum time between a rising WCLKO edge and a rising RCLKO edge to guarantee that $\overline{\text { PAEO will go HIGH (after one RCLKO cycle plus tPAES). If the time between }}$ the rising edge of WCLKO and the rising edge of RCLKO is less than tSKEW3, then the $\overline{\text { PAEO }}$ deassertion may be delayed one extra RCLKO cycle.
6. $\overline{\text { PAEO }}$ is asserted and updated on the rising edge of RCLKO only.
7. $\overline{\mathrm{RCS}} 0=\mathrm{LOW}$, and $\overline{\mathrm{WCS}} 0=\mathrm{LOW}$.
8.

MD	IW	OW	WDDR	RDDR	PFM
1	D/C	D/C	0	0	1

Figure 32. Synchronous Programmable Almost-Empty Flag Timing (Quad mode, IDT Standard and FWFT mode, SDR to SDR)

NOTES:

1. The timing diagram shown is for FIFOO. FIFO1-3 exhibit the same behavior.
2. $\mathrm{mO}=\overline{\mathrm{PAFO}} 0$ offset.
3. $\mathrm{D}=$ maximum FIFO depth. For density of FIFO with bus-matching, refer to the bus-matching section on page 19 .
4. $\overline{\mathrm{PAF}} 0$ is asserted to LOW on WCLKO transition and reset to HIGH on RCLKO transition.
5. $\overline{\text { RCS }} 0=$ LOW, and $\overline{W C S} 0=$ LOW.
6. | MD | IW | OW | WDDR | RDDR | PFM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | D/C | D/C | 0 | 0 | 0 |

Figure 33. Asynchronous Programmable Almost-Full Flag Timing (Quad mode, IDT Standard and FWFT mode, SDR to SDR)

NOTES:

1. The timing diagram shown is for FIFO0. FIFO1-3 exhibit the same behavior.
. $\mathrm{n} 0=\overline{\mathrm{PAE}} 0$ offset.
2. For IDT Standard Mode.
3. For FWFT Mode.
4. $\overline{\mathrm{PAE}} 0$ is asserted LOW on RCLKO transition and reset to HIGH on WCLKO transition.
5. $\overline{\mathrm{RCS}} 0=\mathrm{LOW}$, and $\overline{\mathrm{WCS}} 0=$ LOW .

MD	IW	OW	WDDR	RDDR	PFM
1	D/C	D/C	0	0	0

Figure 34. Asynchronous Programmable Almost-Empty Flag Timing (Quad mode, IDT Standard and FWFT mode, SDR to SDR)

NOTES:

1. All read and write operations must have ceased a minimum of 4 WCLK and 4 RCLK cycles before power down is asserted. $\overline{\text { REN }}$ and $\overline{\text { WEN }}$ must be held HIGH during this interval.
2. When the $\overline{\mathrm{PD}}$ input becomes deasserted, there will be a 1μ s waiting period before read and write operations can resume.

All input and output signals will also resume after this time period.
3. Setup and configuration static inputs are not affected during power down.
4. Serial programming and JTAG programming port are inactive during power down.
5. $\mathrm{RCS}=0, \mathrm{WCS}=0$ and $\mathrm{OE}=0$. These signals can toggle during and after power down.
6. All flags remain active and maintain their current states.
7. During power down, all outputs will be in high-impedance.

Figure 35. Power Down Operation

ORDERING INFORMATION

Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Green
Plastic Ball Grid Array (PBGA, BB324-1)
\(\left.\begin{array}{l}Commercial Only

Commercial and Industrial\end{array}\right\}\)| Clock Cycle Time (tcLK) |
| :--- |
| Speed in Nanoseconds |

Low Power
$32,768 \times 10 \times 4 / 32,768 \times 10 \times 2-2.5 \mathrm{~V}$ Quad/Dual TeraSync ${ }^{\text {TM }}$ DDR/SDR FIFO $65,536 \times 10 \times 4 / 65,536 \times 10 \times 2-2.5 \mathrm{~V}$ Quad/Dual TeraSync ${ }^{\text {TM }}$ DDR/SDR FIFO $131,072 \times 10 \times 4 / 131,072 \times 10 \times 2-2.5 \mathrm{~V}$ Quad/Dual TeraSync ${ }^{\text {TM }}$ DDR/SDR FIFO

NOTES:

1. Industrial temperature range product for the 6-7 speed grade is available as a standard device. All other speed grades available by special order.
2. Green parts available. For specific speeds contact your sales office.

DATASHEET DOCUMENT HISTORY

12/01/2003
03/22/2005
02/11/2009
pgs. 1, 6, 13, 27, and 30 .
pgs. 1, 4, 7, 12-15 and 56 .
pgs. 1 and 56 .

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138

