16 K / 32 K / 64 K / 128 K $\times 9$ Low-Voltage Deep Sync ${ }^{\text {TM }}$ FIFOs

Features

■ 3.3 V operation for low-power consumption and easy integration into low-voltage systems
■ High-speed, low-power, first-in first-out (FIFO) memories
■ $16 \mathrm{~K} \times 9$ (CY7C4261V)
■ $32 \mathrm{~K} \times 9$ (CY7C4271V)
■ $64 \mathrm{~K} \times 9$ (CY7C4281V)
■ $128 \mathrm{~K} \times 9$ (CY7C4291V)
■ 0.35-micron CMOS for optimum speed or power
■ High-speed $100-\mathrm{MHz}$ operation (10-ns read/write cycle times)

- Low power
$\square I_{C C}=25 \mathrm{~mA}$
$\square I_{S B}=4 \mathrm{~mA}$
- Fully asynchronous and simultaneous read and write operation
■ Empty, Full, and programmable Almost Empty and Almost Full status flags
■ Output-enable ($\overline{\mathrm{OE}}$) pin
■ Independent read- and write-enable pins
■ Supports free-running 50\% duty cycle clock inputs
- Width-expansion capability

■ Pin-compatible 3.3 V solutions for CY7C4261/71/81/91
■ Pin-compatible density upgrade to CY7C42X1V family

- Pb-free packages available

Functional Description

The CY7C4261/71/81/91V are high-speed, low-power FIFO memories with clocked read and write interfaces. All are nine bits wide. The CY7C4261/71/81/91V are pin-compatible to the CY7C42x1V Synchronous FIFO family. Programmable features include Almost Full/Almost Empty flags. These FIFOs
provide solutions for a wide variety of data buffering needs, including high-speed data acquisition, multiprocessor interfaces, and communications buffering.
These FIFOs have 9-bit input and output ports that are controlled by separate clock and enable signals. The input port is controlled by a free-running clock (WCLK) and two write-enable pins (WEN1, WEN2/LD).
When $\overline{W E N 1}$ is LOW and WEN2/LD is HIGH, data is written into the FIFO on the rising edge of the WCLK signal. While $\overline{\mathrm{WEN} 1}$ and WEN2/LD are held active, data is continually written into the FIFO on each WCLK cycle. The output port is controlled in a similar manner by a free-running read clock (RCLK) and two read-enable pins ($\overline{R E N} 1, \overline{R E N} 2$). In addition, the CY7C4261/71/81/91V has an output-enable pin (OE). The read (RCLK) and write (WCLK) clocks may be tied together for single-clock operation or the two clocks may be run
independently for asynchronous read/write applications. Clock frequencies up to 100 MHz are achievable. Depth expansion is possible using one enable input for system control, while the other enable is controlled by expansion logic to direct the flow of data.
The CY7C4261/71/81/91V provides four status pins: Empty, Full, Programmable Almost Empty, and Programmable Almost Full. The Almost Empty/Almost Full flags are programmable to single word granularity. The programmable flags default to Empty +7 and Full -7 .
The flags are synchronous, that is, they change state relative to either the read clock (RCLK) or the write clock (WCLK).
When entering or exiting the Empty and Almost Empty states, the flags are updated exclusively by the RCLK. The flags denoting Almost Full, and Full states are updated exclusively by WCLK. The synchronous flag architecture guarantees that the flags maintain their status for at least one cycle.
All configurations are fabricated using an advanced 0.35μ CMOS technology. Input ESD protection is greater than 2001 V , and latch-up is prevented by the use of guard rings.

Selection Guide

		7C4261/71/81/91V-10	7C4261/71/81/91V-15	7C4261/71/81/91V-25	Unit
Maximum frequency		100	66.7	40	MHz
Maximum access time		8	10	15	ns
Minimum cycle time		10	15	25	ns
Minimum data or enable setup		3.5	4	6	ns
Minimum data or enable hold		0	0	1	ns
Maximum flag delay		8	10	15	ns
Active power supply current ($\mathrm{I}_{\mathrm{CC} 1}$)	Commercial	25	25	25	mA
	Industrial	-	30	-	

	CY7C4261V	CY7C4271V	CY7C4281V	CY7C4291V
Density	$16 \mathrm{~K} \times 9$	$32 \mathrm{~K} \times 9$	$64 \mathrm{~K} \times 9$	$128 \mathrm{~K} \times 9$
Package	32 -pin PLCC	32 -pin PLCC	32 -pin PLCC	32 -pin PLCC

CY7C4261V/CY7C4271V CY7C4281V/CY7C4291V

Logic Block Diagram

Contents

Pin Configuration 4
Pin Definitions 4
Architecture 5
Resetting the FIFO 5
FIFO Operation 5
Programming 5
Width-Expansion Configuration 7
Flag Operation 7
Maximum Ratings8
Switching Characteristics 10
Switching Waveforms 11
Write Cycle Timing 11
Read Cycle Timing 11
Reset Timing 12
First Data Word Latency after Reset with Read and Write 13
Full Flag Timing 15
Programmable Almost Empty Flag Timing 15
Programmable Almost Full Flag Timing 16
Write Programmable Registers 16
Read Programmable Registers 17
Ordering Code Definition 18
Ordering Information 18
Acronyms 20
Document Conventions 20
Units of Measure 20
Document History Page 21
Sales, Solutions, and Legal Information 22
Worldwide Sales and Design Support 22
Products 22
PSoC Solutions 22

Pin Configuration

	PLCC Top View	
	29	RS
	28	WEN1
	$7{ }_{7}$ CY7C4261V ${ }^{27}{ }^{1}$	wCLK
	8 CY7C4271V ${ }_{26}{ }^{27}$	WEN2/LD
GND	9 CY7C4281V 25	v_{cc}
REN1	${ }_{10}$ CY7C4291V ${ }^{24}$	Q_{8}
RCLK	11 CY7C4291 23	Q_{7}
REN2	12 22』	Q_{6}
	13 21ן	Q_{5}
	14151617181920 	

Pin Definitions

Pin No.	Signal Name	Description	1/0	Description
1-6, 30-32	D_{0-8}	Data inputs	1	Data inputs for 9-bit bus.
1-6, 30-32	Q_{0-8}	Data outputs	O	Data outputs for 9-bit bus.
28	WEN1	Write Enable 1	1	The only write enable when device is configured to have programmable flags. Data is written on a LOW-to-HIGH transition of WCLK when WEN1 is asserted and $\overline{\mathrm{FF}}$ is HIGH. If the FIFO is configured to have two write enables, data is written on a LOW-to-HIGH transition of WCLK when WEN1 is LOW and WEN2/LD and $\overline{\mathrm{FF}}$ are HIGH.
26	WEN2/디 Dual mode pin	Write Enable 2	1	If HIGH at reset, this pin operates as a second write enable. If LOW at reset, this pin operates as a control to write or read the programmable flag offsets. WEN1 must be LOW and WEN2 must be HIGH to write data into the FIFO. Data will not be written into the FIFO if the FF is LOW. If the FIFO is configured to have programmable flags, WEN2/LD is held LOW to write or read the programmable flag offsets.
		Load		
10, 12	$\overline{\mathrm{REN} 1}, \overline{\mathrm{REN}}$	Read Enable inputs	1	Enables the device for Read operation. Both $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$ must be asserted to allow a read operation.
27	WCLK	Write Clock	1	The rising edge clocks data into the FIFO when $\overline{\mathrm{WEN} 1}$ is LOW and WEN2/ $\overline{\mathrm{LD}}$ is HIGH and the FIFO is not full. When $\overline{\mathrm{LD}}$ is asserted, WCLK writes data into the programmable flag-offset register.
11	RCLK	Read Clock	1	The rising edge clocks data out of the FIFO when $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$ are LOW and the FIFO are not Empty. When WEN2/LD is LOW, RCLK reads data out of the programmable flag-offset register.
14	$\overline{\mathrm{EF}}$	Empty Flag	0	When $\overline{\mathrm{EF}}$ is LOW, the FIFO is empty. $\overline{\mathrm{EF}}$ is synchronized to RCLK.
15	$\overline{\mathrm{FF}}$	Full Flag	O	When $\overline{\mathrm{FF}}$ is LOW, the FIFO is full. $\overline{\mathrm{FF}}$ is synchronized to WCLK.
8	$\overline{\text { PAE }}$	Programmable Almost Empty	0	When $\overline{\text { PAE }}$ is LOW, the FIFO is almost empty based on the almost empty offset value programmed into the FIFO. PAE is synchronized to RCLK.
7	$\overline{\text { PAF }}$	Programmable Almost Full	O	When $\overline{\text { PAF }}$ is LOW, the FIFO is almost full based on the almost full offset value programmed into the FIFO. $\overline{\text { PAF }}$ is synchronized to WCLK.
29	$\overline{\mathrm{RS}}$	Reset	1	Resets device to empty condition. A reset is required before an initial read or write operation after power-up.
13	$\overline{\mathrm{OE}}$	Output Enable	1	When $\overline{\mathrm{OE}}$ is LOW, the FIFO's data outputs drive the bus to which they are connected. If $\overline{\mathrm{OE}}$ is HIGH, the FIFO's outputs are in High Z (high-impedance) state.

Architecture

The CY7C4261/71/81/91V consists of an array of $16 \mathrm{~K}, 32 \mathrm{~K}$, 64 K , or 128 K words of nine bits each (implemented by a dual-port array of SRAM cells), a read pointer a write pointer, control signals (RCLK, WCLK, REN1, REN2, WEN1, WEN2, $\overline{\mathrm{RS}})$, and flags ($\overline{\mathrm{EF}}, \overline{\mathrm{PAE}}, \overline{\mathrm{PAF}}, \overline{\mathrm{FF}}$).

Resetting the FIFO

Upon power-up, the FIFO must be reset with a Reset ($\overline{\mathrm{RS}}$) cycle. This causes the FIFO to enter the Empty condition signified by $\overline{\mathrm{EF}}$ being LOW. All data outputs $\left(\mathrm{Q}_{0-8}\right)$ go $\mathrm{LOW} \mathrm{t}_{\mathrm{RSF}}$ after the rising edge of RS. In order for the FIFO to reset to its default state, the user must not read or write while $\overline{R S}$ is LOW. All flags are guaranteed to be valid $t_{\text {RSF }}$ after RS is taken LOW.

FIFO Operation

When the $\overline{\text { WEN1 }}$ signal is active LOW, WEN2 is active HIGH, and $\overline{F F}$ is active HIGH, data present on the D_{0-8} pins is written into the FIFO on each rising edge of the WCLK signal. Similarly, when the REN1 and REN2 signals are active LOW and EF is active HIGH, data in the FIFO memory will be presented on the Q_{0-8} outputs. New data will be presented on each rising edge of RCLK while REN1 and REN2 are active. REN1 and REN2 must set up $t_{\text {ENS }}$ before RCLK for it to be a valid read function. WEN1 and WEN2 must occur $t_{\text {ENS }}$ before WCLK for it to be a valid write function.
An output enable $(\overline{\mathrm{OE}})$ pin is provided to three-state the Q_{0-8} outputs when $\overline{\mathrm{OE}}$ is asserted. When $\overline{\mathrm{OE}}$ is enabled (LOW), data in the output register will be available to the Q_{0-8} outputs after $t_{\text {OE }}$. If devices are cascaded, the $\overline{\mathrm{OE}}$ function will only output data on the FIFO that is read enabled.
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the last valid read on its Q_{0-8} outputs even after additional reads occur.
Write Enable 1 (WEN1). If the FIFO is configured for programmable flags, Write Enable 1 (WEN1) is the only write enable control pin. In this configuration, when Write Enable 1 ($\overline{\mathrm{WEN} 1}$) is LOW, data can be loaded into the input register and RAM array on the LOW-to-HIGH transition of every write clock (WCLK). Data is stored is the RAM array sequentially and independently of any on-going read operation.
Write Enable 2/Load (WEN2/LD). This is a dual-purpose pin. The FIFO is configured at Reset to have programmable flags or to have two write enables, which allows for depth expansion. If Write Enable 2/Load (WEN2/LD) is set active HIGH at Reset (RS $=$ LOW), this pin operates as a second write enable pin.
If the FIFO is configured to have two write enables, when Write Enable ($\overline{\mathrm{WEN} 1}$) is LOW and Write Enable 2/Load (WEN2/LD) is HIGH, data can be loaded into the input register and RAM array on the LOW-to-HIGH transition of every write clock (WCLK). Data is stored in the RAM array sequentially and independently of any on-going read operation.

Programming

When WEN2/LD is held LOW during Reset, this pin is the load ($\overline{\mathrm{LD}}$) enable for flag offset programming. In this configuration, WEN2/LD can be used to access the four 9-bit offset registers contained in the CY7C4261/71/81/91V for writing or reading data to these registers.
When the device is configured for programmable flags and both WEN2/LD and WEN1 are LOW, the first LOW-to-HIGH transition of WCLK writes data from the data inputs to the empty offset least significant bit (LSB) register. The second, third, and fourth LOW-to-HIGH transitions of WCLK store data in the empty offset most significant bit (MSB) register, full offset LSB register, and full offset MSB register, respectively, when WEN2/LD and WEN1 are LOW. The fifth LOW-to-HIGH transition of WCLK while WEN2/LD and WEN1 are LOW writes data to the empty LSB register again. Figure 1 shows the registers sizes and default values for the various device types.

Figure 1. Offset Register Location and Default Values

16 k x 9

$64 \mathrm{k} \times 9$

$32 \mathrm{k} \times 9$

It is not necessary to write to all the offset registers at one time. A subset of the offset registers can be written; then by bringing the WEN2/LD input HIGH, the FIFO is returned to normal read and write operation. The next time WEN2/ $\overline{\mathrm{LD}}$ is brought LOW, a write operation stores data in the next offset register in sequence.
The contents of the offset registers can be read to the data outputs when WEN2/LD is LOW and both REN1 and REN2 are LOW. LOW-to-HIGH transitions of RCLK read register contents to the data outputs. Writes and reads should not be performed simultaneously on the offset registers.

Programmable Flag (PAE, PAF) Operation

Whether the flag offset registers are programmed as described in Table 1 or the default values are used, the programmable almost-empty flag (PAE) and programmable almost-full flag $(\overline{\mathrm{PAF}})$ states are determined by their corresponding offset registers and the difference between the read and write pointers.

Table 1. Writing the Offset Registers ${ }^{[1]}$

LD	WEN	WCLK	Selection	
0	0		Empty offset (LSB) Empty offset (MSB) Full offset (LSB) Full offset (MSB)	\longrightarrow
0	1		\longrightarrow	No operation
1	0			
1	1		Write into FIFO	

The number formed by the empty offset least significant bit register and empty offset most significant bit register is referred to as n and determines the operation of $\overline{\mathrm{PAE}} . \overline{\mathrm{PAE}}$ is synchronized to the LOW-to-HIGH transition of RCLK by one flip-flop and is LOW when the FIFO contains n or fewer unread words. PAE is set HIGH by the LOW-to-HIGH transition of RCLK when the FIFO contains ($n+1$) or greater unread words.
The number formed by the full offset least significant bit register and full offset most significant bit register is referred to as m and determines the operation of $\overline{\mathrm{PAF}}$. PAF is synchronized to the LOW-to-HIGH transition of WCLK by one flip-flop and is set LOW when the number of unread words in the FIFO is greater than or equal to CY7C4261V (16k - m), CY7C4271V (32k - m),
CY7C4281V $(64 k-m)$ and CY7C4291V (128k $-m)$. PAF is set HIGH by the LOW-to-HIGH transition of WCLK when the number of available memory locations is greater than m.

Table 2. Status Flags

Number of Words in FIFO				FF	PAF	PAE	EF
CY7C4261V	CY7C4271V	CY7C4281V	CY7C4291V				
0	0	0	0	H	H	L	L
1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	H	H	L	H
($\mathrm{n}+1)$ to $(1638-(\mathrm{m}+1)$)	($n+1$) to (32768-(m+1))	$(\mathrm{n}+1)$ to $(65536-(m+1))$	$(\mathrm{n}+1)$ to (131072-(m+1))	H	H	H	H
$(16384-\mathrm{m})^{[3]}$ to 16383	$(32768-\mathrm{m})^{[3]}$ to 32767	$(65536-\mathrm{m})^{[3]}$ to 65535	$(131072-\mathrm{m})^{[3]}$ to 131071	H	L	H	H
16384	32768	65536	131072	L	L	H	H

[^0]
Width-Expansion Configuration

Word width may be increased simply by connecting the corresponding input controls signals of multiple devices. A composite flag should be created for each of the end-point status flags ($\overline{\mathrm{EF}}$ and FF). The partial status flags ($\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$) can be detected from any one device. Figure 2 demonstrates a 18-bit word width by using two CY7C42x1Vs. Any word width can be attained by adding additional $\mathrm{CY} 7 \mathrm{C} 42 \times 1 \mathrm{Vs}$.
When the CY7C42x1V is in a Width-Expansion Configuration, the Read Enable (REN2) control input can be grounded (see Figure 2). In this configuration, the Write Enable 2/Load (WEN2/LD) pin is set to LOW at Reset so that the pin operates as a control to load and read the programmable flag offsets.

Flag Operation

The CY7C4261/71/81/91V devices provide five flag pins to indicate the condition of the FIFO contents. Empty, Full, PAE, and $\overline{\text { PAF }}$ are synchronous.

Full Flag

The Full Flag ($\overline{\mathrm{FF}}$) will go LOW when the device is full. Write operations are inhibited whenever $\overline{\mathrm{FF}}$ is LOW regardless of the state of $\overline{W E N 1}$ and WEN2/ $\overline{\mathrm{LD}}$. $\overline{\mathrm{FF}}$ is synchronized to WCLK, i.e., it is exclusively updated by each rising edge of WCLK.

Empty Flag

The Empty Flag ($\overline{\mathrm{EF}}$) will go LOW when the device is empty. Read operations are inhibited whenever $\overline{\mathrm{EF}}$ is LOW, regardless of the state of REN1 and REN2. EF is synchronized to RCLK, i.e., it is exclusively updated by each rising edge of RCLK.

Figure 2. Block Diagram of 16 K / 32 K / 64 K / 128 K $\times 9$ Low-Voltage Deep Sync FIFO Memory Used in a Width-Expansion Configuration

CY7C4261V/CY7C4271V CY7C4281V/CY7C4291V

Maximum Ratings

(Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.)
Storage temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient temperature with power applied ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply voltage to ground potential \qquad -0.5 V to +3.6 V
DC voltage applied to outputs
in High-Z state \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC input voltage \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Output current into outputs (LOW)
Static discharge voltage > 2001 V (per MIL-STD-883, Method 3015) Latch-up current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}{ }^{[4]}$
Commercial	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 300 \mathrm{mV}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 300 \mathrm{mV}$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		$\begin{gathered} \hline \text { 7C4261/71/81/91V- } \\ 10 \end{gathered}$		$\begin{gathered} 7 \mathrm{C} 4261 / 71 / 81 / 91 \mathrm{~V}- \\ 15 \end{gathered}$		$\begin{gathered} \text { 7C4261/71/81/91V- } \\ 25 \end{gathered}$		Unit
				Min	Max	Min	Max	Min	Max	
V_{OH}	Output HIGH voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \hline \end{aligned}$		2.4	-	2.4	-	2.4	-	V
V_{OL}	Output LOW voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} ., \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$		-	. 04	-	0.4	-	0.4	V
V_{IH}	Input HIGH voltage	-		2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW voltage	-		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I_{IX}	Input leakage current	$V_{C C}=$ Max.		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\begin{aligned} & \mathrm{l}_{\mathrm{OZL}} \\ & \mathrm{l}_{\mathrm{OZH}} \end{aligned}$	Output OFF, High Z current	$\begin{aligned} & \overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}} \end{aligned}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{ICC}_{1}{ }^{[5]}$	Active power supply current	-	Com'l	-	25	-	25	-	25	mA
			Ind	-	-	-	30	-	-	mA
$\mathrm{I}_{\mathrm{SB}}{ }^{[6]}$	Average standby current	-	Com'l	-	4	-	4	-	4	mA
			Ind	-	-	-	4	-	-	mA

Capacitance

Parameter $^{[7]}$	Description	Test Conditions	Max	Unit
C_{IN}	Input capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	7	pF

Notes

4. V_{Cc} Range for commercial -10 ns is $3.3 \mathrm{~V} \pm 150 \mathrm{mV}$.
5. Input signals switch from 0 V to 3 V with a rise/fall time of less than 3 ns , clocks and clock enables switch at maximum frequency of 20 MHz , while data inputs switch at 10 MHz . Outputs are unloaded.
6. All inputs $=V_{C C}-0.2 \mathrm{~V}$, except $\mathrm{W} C L K$ and RCLK (which are at frequency $=0 \mathrm{MHz}$). All outputs are unloaded.
7. Tested initially and after any design or process changes that may affect these parameters.

CY7C4261V/CY7C4271V CY7C4281V/CY7C4291V

AC Test Loads and Waveforms (-15 and -25) ${ }^{[8,9]}$

Equivalent to:

AC Test Loads and Waveforms (-10)

Notes

8. $C_{L}=30 \mathrm{pF}$ for all AC parameters except for $t_{O H Z}$.
9. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{OHz}}$.

Switching Characteristics Over the Operating Range

Parameter	Description	$\begin{array}{\|c} \hline \text { 7C4261/71/81/91V- } \\ 10 \end{array}$		$\begin{gathered} \text { 7C4261/71/81/91V- } \\ 15 \end{gathered}$		$\begin{array}{\|c} \hline \text { 7C4261/71/81/91V- } \\ 25 \end{array}$		Unit
		Min	Max	Min	Max	Min	Max	
t_{S}	Clock cycle frequency	-	100	-	66.7	-	40	MHz
t_{A}	Data access time	2	8	2	10	2	15	ns
$\mathrm{t}_{\text {CLK }}$	Clock cycle time	10	-	15	-	25	-	ns
$\mathrm{t}_{\text {CLKH }}$	Clock HIGH time	4.5	-	6	-	10	-	ns
$\mathrm{t}_{\text {CLKL }}$	Clock LOW time	4.5	-	6	-	10	-	ns
t_{DS}	Data set-up time	3.5	-	4	-	6	-	ns
$\mathrm{t}_{\text {DH }}$	Data hold time	0	-	0	-	1	-	ns
$\mathrm{t}_{\text {ENS }}$	Enable set-up time	3.5	-	4	-	6	-	ns
tenh	Enable hold time	0	-	0	-	1	-	ns
t_{RS}	Reset pulse width ${ }^{[10]}$	10	-	15	-	25	-	ns
$\mathrm{t}_{\text {RSS }}$	Reset set-up time	8	-	10	-	15	-	ns
$\mathrm{t}_{\text {RSR }}$	Reset recovery time	8	-	10	-	15	-	ns
$\mathrm{t}_{\text {RSF }}$	Reset to flag and output time	-	10	-	15	-	25	ns
$\mathrm{t}_{\text {OLZ }}$	Output enable to output in Low ${ }^{[10]}$	0	-	0	-	0	-	ns
toe	Output enable to output valid	3	7	3	10	3	12	ns
$\mathrm{t}_{\mathrm{OHz}}$	Output enable to output in High $\mathrm{Z}^{[11]}$	3	7	3	8	3	12	ns
$\mathrm{t}_{\text {WFF }}$	Write clock to Full flag	-	8	-	10	-	15	ns
$\mathrm{t}_{\text {REF }}$	Read clock to Empty flag	-	8	-	10	-	15	ns
$\mathrm{t}_{\text {PAF }}$	Clock to programmable Almost-Full flag	-	8	-	10	-	15	ns
$\mathrm{t}_{\text {PAE }}$	Clock to programmable Almost-Full flag	-	8	-	10	-	15	ns
${ }^{\text {tSKEW1 }}$	Skew time between read clock and write clock for Empty flag and Full flag	5	-	6	-	10	-	ns
${ }^{\text {tSKEW2 }}$	Skew time between read clock and write clock for Almost-Empty flag and Almost-Full flag	10	-	15	-	18	-	ns

Notes

10. Pulse widths less than minimum values are not allowed.
11. Values guaranteed by design, not currently tested.

Switching Waveforms

Write Cycle Timing

Read Cycle Timing

$\overline{\mathrm{WEN} 1}$ \qquad

WEN2

Notes

12. $\mathrm{t}_{\text {SKEW }}$ is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskEW $_{1}$, then FF may not change state until the next WCLK rising edge.
13. $\mathrm{t}_{\text {SKEW } 1}$ is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\mathrm{EF}}$ will go HIGH during the current clock cycle. It the time between the rising edge of WCLK and the rising edge of RCLK is less than $\mathrm{t}_{\text {SKEW2 }}$, then EF may not change state until the next RCLK rising edge.

Switching Waveforms (continued)
Reset Timing ${ }^{[14]}$

[^1]Switching Waveforms (continued)
First Data Word Latency after Reset with Read and Write

Notes

17. When $t_{\text {SKEW } 1} \geq$ minimum specification, $\mathrm{t}_{\text {FRL }}($ maximum $)=\mathrm{t}_{\mathrm{CLK}}+\mathrm{t}_{\text {SKEW } 2}$. When $\mathrm{t}_{\text {SKEW } 1}<$ minimum specification, $\mathrm{t}_{\text {FRL }}$ (maximum) $=$ either $2^{*} \mathrm{t}_{\mathrm{CLK}}+\mathrm{t}_{\text {SKEW1 }}$ or $\mathrm{t}_{\mathrm{CLK}}$ $+\mathrm{t}_{\text {SKEW1 }}$. The Latency Timing applies only at the Empty Boundary ($\mathrm{EF}=\mathrm{LOW}$).
18. The first word is available the cycle after EF goes HIGH, always

Switching Waveforms (continued)
Empty Flag Timing

Note

19. When $\mathrm{t}_{\text {SKEW } 1} \geq$ minimum specification, $\mathrm{t}_{\text {FRL }}($ maximum $)=\mathrm{t}_{\mathrm{CLK}}+\mathrm{t}_{\text {SKEW2 }}$. When $\mathrm{t}_{\text {SKEW1 }}<$ minimum specification, $\mathrm{t}_{\text {FRL }}$ (maximum) $=$ either $2^{*} \mathrm{t}_{\mathrm{CLK}}+\mathrm{t}_{\text {SKEW1 }}$ or $\mathrm{t}_{\mathrm{CLK}}$
$+\mathrm{t}_{\text {SKEW1 }}$. The Latency Timing applies only at the Empty Boundary ($\overline{\mathrm{EF}}=$ LOW).

Switching Waveforms (continued)
Full Flag Timing

Programmable Almost Empty Flag Timing

Switching Waveforms (continued)

Programmable Almost Full Flag Timing

[^2]Switching Waveforms (continued)
Read Programmable Registers

CY7C4261V/CY7C4271V CY7C4281V/CY7C4291V

Ordering Information

16 K × 9 Low-Voltage Deep Sync FIFO				
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C4261V-10JXC	J65	32-pin Pb-free plastic leaded chip carrier	Commercial
15	CY7C4261V-15JXC	J65	32-pin Pb-free plastic leaded chip carrier	Commercial
$32 \mathrm{~K} \times 9$ Low-Voltage Deep Sync FIFO				
10	CY7C4271V-10JXC	J65	32-pin Pb-free plastic leaded chip carrier	Commercial
64 K $\times 9$ Low-Voltage Deep Sync FIFO				
10	CY7C4281V-10JXC	J65	32-pin Pb-free plastic leaded chip carrier	Commercial
128 K × 9 Low-Voltage Deep Sync FIFO				
10	CY7C4291V-10JXC	J65	32-pin Pb-free plastic leaded chip carrier	Commercial
15	CY7C4291V-15JXC	J65	32-pin Pb-free plastic leaded chip carrier	Commercial

Ordering Code Definition

| |
| ---: | :--- |

Package Diagram

Figure 3. 32-Pin Pb-free Plastic Leaded Chip Carrier J65, 51-85002

CY7C4261V/CY7C4271V CY7C4281V/CY7C4291V

Acronyms

Table 3. Acronyms Used

Acronym	Description
CMOS	complementary metal oxide semiconductor
$\overline{\mathrm{CE}}$	chip enable
I/O	input/output
$\overline{\mathrm{OE}}$	output enable
SRAM	static random access memory
TSOP	thin small outline package
$\overline{\mathrm{WE}}$	write enable

Document Conventions

Units of Measure

Table 4. Units of Measure

Symbol	Unit of Measure
ns	nano seconds
V	volts
$\mu \mathrm{A}$	micro amperes
mA	milli amperes
pF	pico Farad
${ }^{\circ} \mathrm{C}$	degree Celsius
W	watts

CY7C4261V/CY7C4271V CY7C4281V/CY7C4291V

Document History Page

Document Title: CY7C4261V/CY7C4271V/CY7C4281V/CY7C4291V $16 \mathrm{~K} / 32 \mathrm{~K} / 64 \mathrm{~K} / 128 \mathrm{~K} \times 9$ Low-Voltage Deep Sync ${ }^{\text {TM }}$ FIFOs Document Number: 38-06013

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	106474	09/15/01	SZV	Changed Spec number from 38-00656 to 38-06013
*A	127858	09/04/03	FSG	Changed: tsKEW2 to tSKEW1 in Switching Waveforms "Empty Flag Timing" diagram Fixed flag timing diagram in Switching Waveforms section
*B	386127	See ECN	ESH	Added Pb-Free logo to top of front page Added CY7C4291V-15JXC, CY7C91V-10JXC, CY7C4281V-10JXC, CY7C4271V-10JXC, CY7C4261V-10JXC, CY7C4261V-15JXC to ordering information.
*C	2896378	03/19/2010	RAME	Removed inactive parts from Ordering information and updated package diagram.
*D	2906525	04/07/2010	RAME	Removed inactive part from Ordering Information table.
*E	3069396	10/22/2010	ADMU	Corrected data in Programmable Flag ($\overline{\mathrm{PAE}}, \overline{\mathrm{PAF}}$) Operation: a) $\overline{\text { PAF }}$ is synchronized to the LOW-to-HIGH transition of RCLK by one flip-flop and is LOW when the FIFO contains n or fewer unread words. Changed PAF to PAE. b) $\overline{\text { PAE }}$ is synchronized to the LOW-to-HIGH transition of WCLK by one flip-flop and is set LOW when the number of unread words in the FIFO is greater than or equal to CY7C4261 (16K-m) and CY7C4271 (32K-m). Changed PAE to PAF. Added Acronyms, Document Conventions, and Ordering Code Definition.
*F	3210221	03/25/2011	ADMU	Removed CY7C4271V-10JC part from Ordering Information table.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks \& Buffers	cypress.com/go/clocks cypress.com/go/interface
Interface	cypress.com/go/powerpsoc Lighting \& Power Control cypress.com/go/plc
Memory	cypress.com/go/memory
Optical \& Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

© Cypress Semiconductor Corporation, 2005-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[^0]: Notes

 1. The same selection sequence applies to reading from the registers. $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN}}$ are enabled and a read is performed on the LOW-to-HIGH transition of RCLK.
 2. $n=$ Empty Offset ($n=7$ default value).
 3. $m=$ Full Offset $(m=7$ default value).
[^1]: Notes
 14. The clocks (RCLK, WCLK) can be free-running during reset.
 15. After reset, the outputs will be LOW if $\overline{\mathrm{OE}}=0$ and three-state if $\overline{\mathrm{OE}}=1$
 16. Holding WEN2/LD HIGH during reset will make the pin act as a second enable pin. Holding WEN2/LD LOW during reset will make the pin act as a load enable for the programmable flag offset registers.

[^2]: Notes
 24. If a write is performed on this rising edge of the write clock, there will be Full $-(\mathrm{m}-1)$ words of the FIFO when $\overline{\text { PAF }}$ goes LOW.
 25. PAF offset $=\mathrm{m}$.
 26. $16 \mathrm{~K}-\mathrm{m}$ words for CY7C4261V, $32 \mathrm{~K}-\mathrm{m}$ words for CY7C4271V, $64 \mathrm{~K}-\mathrm{m}$ words for CY7C4281V, and $128 \mathrm{~K}-\mathrm{m}$ words for CY4291V
 27. $\mathrm{t}_{\text {SKEW2 }}$ is the minimum time between a rising RCLK edge and a rising WCLK edge for PAF to change during that clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than STKEW2 2, then PAF may not change state until the next WCLK.

