

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I L I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$
	Parallel Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CEP}}$	Count Enable Parallel Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CET}}$	Count Enable Trickle Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{U} / \overline{\mathrm{D}}$	Up/Down Count Control Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{SR}}$	Synchronous Reset Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$	3-STATE Parallel Data Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$\overline{\mathrm{TC}}$	Terminal Count Output (Active LOW)	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{CC}}$	Clocked Carry Output (Active LOW)	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 74F569 counts in the modulo-16 binary sequence. From state 15 it will increment to state 0 in the Up mode; in the Down mode it will decrement from 0 to 15 . The clock inputs of all flip-flops are driven in parallel through a clock buffer. All state changes (except due to Master Reset) occurs synchronously with the LOW-to-HIGH transition of the Clock Pulse (CP) input signal.
The circuits have five fundamental modes of operation, in order of precedence: asynchronous reset, synchronous reset, parallel load, count and hold. Five control inputsMaster Reset (MR), Synchronous Reset (SR), Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel ($\overline{\mathrm{CEP}}$) and Count Enable Trickle CET)—plus the Up/Down (U/D) input, determine the mode of operation, as shown in the Mode Select Table. A LOW signal on $\overline{M R}$ overrides all other inputs and asynchronously forces the flip-flop Q outputs LOW. A LOW signal on $\overline{\mathrm{SR}}$ overrides counting and parallel loading and allows the Q outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data $\left(\mathrm{P}_{\mathrm{n}}\right)$ inputs to be loaded into the flip-flops on the next rising edge of CP. With $\overline{M R}$, $\overline{\mathrm{SR}}$ and $\overline{\mathrm{PE}} \mathrm{HIGH}, \overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ permit counting when both are LOW. Conversely, a HIGH signal on either CEP or CET inhibits counting.
The 74F569 uses edge-triggered flip-flops and changing the SR, PE, CEP, CET or U/D inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

Two types of outputs are provided as overflow/underflow indicators. The Terminal Count (TC) output is normally HIGH and goes LOW providing CET is LOW, when the counter reaches zero in the Down mode, or reaches maximum
(15) in the Up mode. $\overline{\mathrm{TC}}$ will then remain LOW until a state change occurs, whether by counting or presetting, or until U / \bar{D} or $\overline{\mathrm{CET}}$ is changed. To implement synchronous multi-
stage counters, the connections between the $\overline{\mathrm{TC}}$ output and the $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ inputs can provide either slow or fast carry propagation
Figure 1 shows the connections for simple ripple carry, in which the clock period must be longer than the CP to TC delay of the first stage, plus the cumulative $\overline{\overline{C E T}}$ to $\overline{\mathrm{TC}}$ delays of the intermediate stages, plus the $\overline{C E T}$ to CP setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure 2 are recommended. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, or min to max in the Down mode, to start its final cycle. Since this final cycle takes 16 clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timing that limits the clock period is the CP to $\overline{\mathrm{TC}}$ delay of the first stage plus the CEP to CP setup time of the last stage. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, registers or counters. For such applications, the Clocked Carry ($\overline{\mathrm{CC}}$) output is provided. The CC output is normally HIGH. When CEP, CET, and TC are LOW, the CC output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again, as shown in the CC Truth Table When the Output Enable ($\overline{\mathrm{OE} \text {) is LOW, the parallel data }}$ outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ are active and follow the flip-flop Q outputs A HIGH signal on $\overline{\mathrm{OE}}$ forces $\mathrm{O}_{0}-\mathrm{O}_{3}$ to the High Z state but does not prevent counting, loading or resetting.

Logic Equations

Count Enable $=\overline{\mathrm{CEP}} \cdot \overline{\mathrm{CET}} \cdot \mathrm{PE}$
Up: $\overline{T C}=Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot(U p) \cdot \overline{C E T}$
Down: $\overline{\mathrm{TC}}=\overline{\mathrm{Q}}_{0} \cdot \overline{\mathrm{Q}}_{1} \cdot \overline{\mathrm{Q}}_{2} \cdot \overline{\mathrm{Q}}_{3} \cdot($ Down $) \cdot \overline{\mathrm{CET}}$

Absolute Maximum Ratings(Note 2)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 3)
Input Current (Note 3)
Voltage Applied to Output

in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	
Standard Output	-0.5 V to V_{CC}
3-STATE Output	-0.5 V to +5.5 V

Current Applied to Output in LOW State (Max) twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{Cc}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{O}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{O}_{\mathrm{n}}\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I} \mathrm{OL}=20 \mathrm{~mA}(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}) \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{O}_{\mathrm{n}}\right) \end{aligned}$
$\overline{I_{\mathrm{H}}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
${ }^{\text {Cex }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{\mathrm{n}}\right)$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
$\mathrm{I}_{\text {IL }}$	Input LOW Current			$\begin{aligned} & \hline-0.6 \\ & -1.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Max Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{P}_{\mathrm{n}}, \overline{\mathrm{CEP}}, \mathrm{CP}, \mathrm{U} / \overline{\mathrm{D}}, \overline{\mathrm{OE}}, \overline{\mathrm{MR}}, \overline{\mathrm{SR}}\right)$ $\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{PE}}, \overline{\mathrm{CET}})$
$\overline{\text { IOzH }}$	Output Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{O}_{\mathrm{n}}\right)$
lozL	Output Leakage Current			-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{O}_{\mathrm{n}}\right)$
los	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{\mathrm{n}}\right)$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}\left(\mathrm{O}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {CCH }}$	Power Supply Current		45	67	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {ICCL }}$	Power Supply Current		45	67	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
${ }^{\text {CCZ }}$	Power Supply Current		45	67	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\mathrm{T}_{\mathbf{A}}=$	$+70^{\circ} \mathrm{C}$	Units
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	90			70		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \mathrm{CP} \text { to } \mathrm{O}_{\mathrm{n}}(\overline{\mathrm{PE}} \text { HIGH or LOW }) \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & \hline 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 13.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to $\overline{T C}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 6.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 7.0 \\ 12.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay U/ $\overline{\mathrm{D}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & \hline 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to $\overline{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\mathrm{CEP}}, \overline{\mathrm{CET}} \text { to } \overline{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} \hline 6.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 12.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}} \text { to } \mathrm{O}_{\mathrm{n}}$	5.0	10.0	13.0	5.0	14.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{aligned} & \hline 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 7.0 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{S}}(\mathrm{H})$	Setup Time, HIGH or LOW	4.0		4.5		ns
$\mathrm{t}_{\text {s }}(\mathrm{L})$	P_{n} to CP	4.0		4.5		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	3.0		3.5		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	P_{n} to CP	3.0		3.5		
$\mathrm{t}_{\text {S }}(\mathrm{H})$	Setup Time, HIGH or LOW	7.0		8.0		ns
$\mathrm{t}_{\text {s }}(\mathrm{L})$	$\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	5.0		6.5		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	0		0		
$t_{H}(\mathrm{~L})$	$\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	0.5		0.5		
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	8.0		9.0		ns
$\mathrm{t}_{\text {S }}(\mathrm{L})$	$\overline{\mathrm{PE}}$ to CP	8.0		9.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	0.0		1.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	$\overline{\text { PE to CP }}$	0		0		
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	11.0		12.5		
$\mathrm{t}_{\text {s }}(\mathrm{L})$	U/D to CP	7.0		8.5		ns
${ }_{\mathrm{t}_{\mathrm{H}}(\mathrm{H})}$	Hold Time, HIGH or LOW	0		0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	U / D to CP	0		0		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	10.5		11.0		ns
$\mathrm{t}_{\text {s }}(\mathrm{L})$	$\overline{\mathrm{SR}}$ to CP	8.5		9.5		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	0		0		
$t_{H}(\mathrm{~L})$	$\overline{\mathrm{SR}}$ to CP	0		0		
${ }_{\text {t }}(\mathrm{H})$	CP Pulse Width,	4.0		4.5		ns
	HIGH or LOW	7.0		8.0		ns
${ }^{\text {tw }}$ (L)	$\overline{\text { MR Pulse Width, LOW }}$	4.5		6.0		ns
$\mathrm{t}_{\text {REC }}$	$\overline{\mathrm{MR}}$ Recovery Time	6.0		8.0		ns

