SEMICONDUCTOR

SCAN182245A Non-Inverting Transceiver with 25Ω Series Resistor Outputs

General Description

The SCAN182245A is a high performance BiCMOS bidirectional line driver featuring separate data inputs organized into dual 9-bit bytes with byte-oriented output enable and direction control signals. This device is compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture with the incorporation of the defined boundary-scan test logic and test access port consisting of Test Data Input (TDI), Test Data Out (TDO), Test Mode Select (TMS), and Test Clock (TCK).

Features

- High performance BiCMOS technology
- **\blacksquare** 25 Ω series resistors in outputs eliminate the need for
- external terminating resistors
- Dual output enable control signals
- 3-STATE outputs for bus-oriented applications
- 25 mil pitch SSOP (Shrink Small Outline Package)
- IEEE 1149.1 (JTAG) Compliant
- Includes CLAMP, IDCODE and HIGHZ instructions
- Additional instructions SAMPLE-IN, SAMPLE-OUT and EXTEST-OUT

December 1993

Revised January 2001

- Power Up 3-STATE for hot insert
- Member of Fairchild's SCAN Products

Ordering Code:

Order Number	Package Number	Package Description
SCAN182245ASSC	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
SCAN182245AMTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Devices also available in T	ape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Connection Diagram

1		_
TMS —	1	56 — TDI
B10	2	55 — A1 ₀
DIR 1 🚽	3	54 — G1
в1 ₁ —	4	53 — A 1 ₁
B12 -	5	52 — A1 ₂
GND -	6	51 — GND
B13 -	7	50 — A13
B14	8	49 — A14
v _{cc} —	9	48 — V _{CC}
B15 -	10	47 — A1 ₅
81 ₆ —	11	46 — A1 ₆
GND -	12	45 — GND
B17 -	13	44 — A1 ₇
81 ₈ —	14	43 — A1 ₈
в2 ₀ —	15	42 — A2 _D
B2 ₁ —	16	41 — A2 ₁
GND -	17	40 — GND
в2 ₂ —	18	39 — A2 ₂
в2 ₃ —	19	38 — A2 ₃
۷ _{cc} —	20	$37 - V_{CC}$
в2 ₄ —	21	36 — A24
в2 ₅ —	22	35 — A2 ₅
GND -	23	34 — GND
82 ₆ —	24	33 — A2 ₆
82 ₇ —	25	32 — A2 ₇
DIR Z -	26	31 — G2
82 ₈ —	27	30 — A2 ₈
TD0	28	29 — ТСК

Pin Descriptions

Pin Names	Description
A1 ₍₀₋₈₎	Side A1 Inputs or 3-STATE Outputs
B1 ₍₀₋₈₎	Side B1 Inputs or 3-STATE Outputs
A2 ₍₀₋₈₎	Side A2 Inputs or 3-STATE Outputs
B2 ₍₀₋₈₎	Side B2 Inputs or 3-STATE Outputs
G1, G2	Output Enable Pins (Active LOW)
DIR1, DIR2	Direction of Data Flow Pins

© 2001 Fairchild Semiconductor Corporation DS011657

Truth Tables

Inp				
G2 (Note 1)	DIR2	A2 ₍₀₋₈₎		B2 ₍₀₋₈₎
L	L	Н	÷	Н
L	L	L	\leftarrow	L
L	н	н	\rightarrow	н
L	н	L	\rightarrow	L
н	х	Z		Z

L = LOW Voltage Level

X = Immaterial Z = High Impedance Note 1: Inactive-to-Active transition must occur to enable outputs upon power-up.

Functional Description

The SCAN182245A consists of two sets of nine non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus-oriented applications. Direction pins (DIR1 and DIR2) LOW enables data from B Ports to A Ports,

when HIGH enables data from A Ports to B Ports. The Output Enable pins ($\overline{G1}$ and $\overline{G2}$) when HIGH disables both A and B Ports by placing them in a high impedance condition.

Block Diagrams

Note: BSR stands for Boundary Scan Register.

www.fairchildsemi.com

Description of BOUNDARY-SCAN Circuitry

The scan cells used in the BOUNDARY-SCAN register are one of the following two types depending upon their location. Scan cell TYPE1 is intended to solely observe system data, while TYPE2 has the additional ability to control system data.

Scan cell TYPE1 is located on each system input pin while scan cell TYPE2 is located at each system output pin as well as at each of the two internal active-high output enable signals. AOE controls the activity of the A-outputs while BOE controls the activity of the B-outputs. Each will activate their respective outputs by loading a logic high.

The BYPASS register is a single bit shift register stage identical to scan cell TYPE1. It captures a fixed logic low.

SCAN182245A Product IDCODE (32-Bit Code per IEEE 1149.1)

Versio n	Entity	Part	Manufacture r	Required
		Number	ID	by 1149.1
0000	111111	00000000 0	00000001111	1
MSB				MSB

The INSTRUCTION register is an 8-bit register which captures the default value of 10000001 (SAMPLE/PRELOAD) during the CAPTURE-IR instruction command. The benefit of capturing SAMPLE/PRELOAD as the default instruction during CAPTURE-IR is that the user is no longer required to shift in the 8-bit instruction for SAMPLE/PRELOAD. The sequence of: CAPTURE-IR \rightarrow EXIT1-IR \rightarrow UPDATE-IR will update the SAMPLE/PRELOAD instruction. For more information refer to the section on instruction definitions.

Instruction Code	Instruction
0000000	EXTEST
1000001	SAMPLE/PRELOAD
10000010	CLAMP
00000011	HIGH-Z
01000001	SAMPLE-IN
01000010	SAMPLE-OUT
00100010	EXTEST-OUT
10101010	IDCODE
1111111	BYPASS
All Others	BYPASS

Scan Cell TYPE1 SCAN OUT DATA OUT SHIFT DR CLOC D.P. cell) Scan Cell TYPE2 (to DATA OUT SHIFT DR 01.05 UPDAT DF (from

www.fairchildsemi.com

Downloaded from <u>Elcodis.com</u> electronic components distributor

SCAN182245A

www.fairchildsemi.com

5

www.fairchildsemi.com

Bit No.	Pin Name	Pin No.	Pin Type	Scan C	ell Type	Bit No.	Pin Name	Pin No.	Pin Type	Scan C	ell Type
79	DIR1	3	Input	TYPE1		35	B1 ₀	2	Input	TYPE1	
78	G1	54	Input	TYPE1		34	B1 ₁	4	Input	TYPE1	
77	AOE ₁		Internal	TYPE2		33	B1 ₂	5	Input	TYPE1	
76	BOE ₁		Internal	TYPE2	Control	32	B1 ₃	7	Input	TYPE1	
75	DIR2	26	Input	TYPE1	Signals	31	B1 ₄	8	Input	TYPE1	B1–in
74	G2	31	Input	TYPE1		30	B1 ₅	10	Input	TYPE1	
73	AOE ₂		Internal	TYPE2		29	B1 ₆	11	Input	TYPE1	
72	BOE ₂		Internal	TYPE2		28	B1 ₇	13	Input	TYPE1	
71	A1 ₀	55	Input	TYPE1		27	B1 ₈	14	Input	TYPE1	
70	A1 ₁	53	Input	TYPE1		26	B2 ₀	15	Input	TYPE1	
69	A1 ₂	52	Input	TYPE1		25	B2 ₁	16	Input	TYPE1	
68	A1 ₃	50	Input	TYPE1		24	B2 ₂	18	Input	TYPE1	
67	A1₄	49	Input	TYPE1	A1–in	23	B2 ₃	19	Input	TYPE1	
	A1 ₅	47	Input	TYPE1			B2 ₄	21	Input	TYPE1	B2–ir
	A1 ₆	46	Input	TYPE1			B2 ₅	22	Input	TYPE1	
	A1 ₇	44	Input	TYPE1			B2 ₆	24	Input	TYPE1	
	, A1 ₈	43	Input	TYPE1			B2 ₇	25	Input	TYPE1	
	A2 ₀	42	Input	TYPE1			, B2 ₈	27	Input	TYPE1	
	A21	41	Input	TYPE1			A1 ₀	55	Output	TYPE2	
	A2 ₂	39	Input	TYPE1			A1 ₁	53	Output	TYPE2	
	A2 ₃	38	Input	TYPE1			A1 ₂	52	Output	TYPE2	
	A2 ₄	36	Input	TYPE1	A2–in		A1 ₃	50	Output	TYPE2	
57	A2 ₅	35	Input	TYPE1			A1 ₄	49	Output	TYPE2	A1–οι
	A2 ₆	33	Input	TYPE1			A1 ₅	47	Output	TYPE2	/
	A2 ₇	32	Input	TYPE1			A1 ₆	46	Output	TYPE2	
	A2 ₈	30	Input	TYPE1			A1 ₇	44	Output	TYPE2	
	B1 ₀	2	Output	TYPE2			A1 ₈	43	Output	TYPE2	
	B1₁	4	Output	TYPE2			A2 ₀	42	Output	TYPE2	
51		5	Output	TYPE2			A2 ₁	41	Output	TYPE2	
-	B1 ₃	7	Output	TYPE2			A2 ₂	39	Output	TYPE2	
	B1₄	8	Output		B1-out		A2 ₃	38	Output	TYPE2	
	B1 ₅	10	Output	TYPE2	D. out		A2 ₄	36	Output	TYPE2	A2-01
	B1 ₆	10	Output	TYPE2			A2 ₅	35	Output	TYPE2	
	B1 ₆ B1 ₇	13	Output	TYPE2			A2 ₆	33	Output	TYPE2	
	B1 ₈	14	Output	TYPE2			A2 ₇	32	Output	TYPE2	
	B1 ₈ B2 ₀	14	Output	TYPE2			A2 ₇ A2 ₈	30	Output	TYPE2	
	B2 ₀ B2 ₁	16	Output	TYPE2		0	- - 8		Culput		
	B2 ₁ B2 ₂	18	Output	TYPE2							
	B2 ₂ B2 ₃	19	Output	TYPE2							
	B2 ₃ B2 ₄	21	Output		B2-out						
	B2 ₄ B2 ₅	21	Output	TYPE2	DZ OUL						
	B2 ₅ B2 ₆	22	Output	TYPE2							
	в2 ₆ В2 ₇	24 25	Output	TYPE2							
		25 27		TYPE2							
30	B2 ₈	21	Output	ITPE2							

SCAN ABT Live Insertion and Power Cycling Characteristics

SCAN ABT is intended to serve in Live Insertion backplane applications. It provides 2nd Level Isolation¹ which indicates that while external circuitry to control the output enable pin is unnecessary, there may be a need to implement differential length backplane connector pins for V_{CC} and GND. As well, pre-bias circuitry for backplane pins may be necessary to avoid capacitive loading effects during live insertion.

SCAN ABT provides control of output enable pins during power cycling via the circuit in Figure 1. It essentially controls the \overline{G}_n pin until V_{CC} reaches a known level.

During *power-up*, when V_{CC} ramps through the 0.0V to 0.7V range, all internal device circuitry is inactive, leaving output and I/O pins of the device in high impedance. From approximately 0.8V to 1.8V V_{CC}, the Power-On-Reset circuitry, (POR), in Figure 1 becomes active and maintains device high impedance mode. The POR does this by providing a low from its output that resets the flip-flop The output, Q, of the flip-flop then goes high and disables the NOR gate from an incidental low input on the \overline{G}_n pin. After 1.8V V_{CC} , the POR circuitry becomes inactive and ceases to

control the flip-flop. To bring the device out of high impedance, the \overline{G}_n input must receive an inactive-to-active transition, a high-to-low transition on \overline{G}_n in this case to change the state of the flip-flop. With a low on the \overline{Q} output of the flip-flop, the NOR gate is free to allow propagation of a \overline{G}_n signal.

During *power-down*, the Power-On-Reset circuitry will become active and reset the flip-flop at approximately 1.8V V_{CC}. Again, the \overline{Q} output of the flip-flop returns to a high and disables the NOR gate from inputs from the \overline{G}_n pin. The device will then remain in high impedance for the remaining ramp down from 1.8V to 0.0V V_{CC}.

Some suggestions to help the designer with live insertion issues:

- The \overline{G}_n pin can float during power-up until the Power-On-Reset circuitry becomes inactive.
- The $\overline{\mathsf{G}}_n$ pin can float on power-down only after the Power-On-Reset has become active.

The description of the functionality of the Power-On-Reset circuitry can best be described in the diagram of Figure 2.

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$	
Ambient Temperature under Bias	-55°C to +125°C	
Junction Temperature under Bias	-55°C to +150°C	
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V	
Input Voltage (Note 3)	-0.5V to +7.0V	
Input Current (Note 3)	-30 mA to +5.0 mA	
Voltage Applied to Any Output		
in the Disabled or		
Power-Off State	-0.5V to +5.5V	
in the HIGH State	–0.5V to V_{CC}	
Current Applied to Output		ı
in LOW State (Max)	Twice the Rated I _{OL} (mA)	r
DC Latchup Source Current	–500 mA	
Over Voltage Latchup (I/O)	10V	
ESD (HBM) Min.	2000V	

Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V/\Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns

SCAN182245A

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Paramete	er	Vcc	Min	Тур	Max	Units	Conditions
V _{IH}	Input HIGH Voltage			2.0			V	Recognized HIGH Signal
VIL	Input LOW Voltage					0.8	V	Recognized LOW Signal
V _{CD}	Input Clamp Diode Volta	ge	Min			-1.2	V	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		Min	2.5			V	I _{OH} = -3 mA
			Min	2.0			V	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		Min			0.8	V	I _{OL} = 15 mA
IIH	Input HIGH Current	All Others	Max			5	μA	V _{IN} = 2.7V (Note 4)
		All Others	Max			5	μA	$V_{IN} = V_{CC}$
		TMS, TDI	Max			5	μΑ	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Brea	kdown Test	Max			7	μA	V _{IN} = 7.0V
I _{BVIT}	Input HIGH Current Brea	kdown Test (I/O)	Max			100	μA	$V_{IN} = 5.5V$
IIL	Input LOW Current		Max			-5	μA	V _{IN} = 0.5V (Note 4)
		All Others	Max			-5	μA	$V_{IN} = 0.0V$
		TMS, TDI	Max			-385	μA	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		0.0	4.75			V	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{IH} + I _{OZH}	Output Leakage Current		Max			50	μA	$V_{OUT} = 2.7V$
I _{IL} + I _{OZL}	Output Leakage Current		Max			-50	μA	$V_{OUT} = 0.5V$
I _{OZH}	Output Leakage Current		Max			50	μA	$V_{OUT} = 2.7V$
I _{OZL}	Output Leakage Current		Max			-50	μA	$V_{OUT} = 0.5V$
I _{OS}	Output Short-Circuit Curr	rent	Max	-100		-275	mA	$V_{OUT} = 0.0V$
I _{CEX}	Output HIGH Leakage C	urrent	Max			50	μΑ	$V_{OUT} = V_{CC}$
I _{ZZ}	Bus Drainage Test		0.0			100	μA	V _{OUT} = 5.5V, All Others GND
I _{CCH}	Power Supply Current		Max			250	μΑ	$V_{OUT} = V_{CC}$; TDI, TMS = V_{CC}
			Max			1.0	mA	$V_{OUT} = V_{CC}$; TDI, TMS = GND
I _{CCL}	Power Supply Current		Max				mA	$V_{OUT} = LOW; TDI, TMS = V_{CC}$
			Max			65.8	mA	V _{OUT} = LOW; TDI, TMS = GND
I _{CCZ}	Power Supply Current		Max			250	μΑ	TDI, TMS = V _{CC}
			Max			1.0	mA	TDI, TMS = GND
I _{CCT}	Additional I _{CC} /Input							
		All Other Inputs	Max			2.9	mA	$V_{IN} = V_{CC} - 2.1V$
		TDI, TMS inputs	Max			3	mA	$V_{IN} = V_{CC} - 2.1V$
I _{CCD}	Dynamic I _{CC}	No Load	Max			0.2	mA/	Outputs Open
							MHz	One Bit Toggling, 50% Duty Cyc

9

AC Electrical Characteristics

Normal Operation: v_{cc} $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \ pF$ Units Symbol Parameter (V) (Note 5) Min Тур Max t_{PLH} t_{PHL} Propagation Delay 1.0 3.1 5.2 5.0 ns A to B, B to A 1.5 4.4 6.5 t_{PLZ} Disable Time 1.5 4.8 8.6 5.0 ns 1.5 5.2 8.9 t_{PHZ} t_{PZL} Enable Time 1.5 5.5 9.1 5.0 ns 1.5 4.6 8.2 t_{PZH}

Note 5: Voltage Range $5.0V \pm 0.5V$

AC Electrical Characteristics

Symbol	Parameter	V _{CC} (V)	T _A	= -40°C to +8 C ₁ = 50 pF	5°C	Units
-,		(Note 6)	Min	Тур	Max	
t _{PLH}	Propagation Delay	5.0	2.9	6.1	10.2	
t _{PHL}	TCK to TDO	5.0	4.2	7.7	12.1	ns
t _{PLZ}	Disable Time	5.0	2.1	5.9	10.7	ns
t _{PHZ}	TCK to TDO	5.0	3.3	7.4	12.5	115
t _{PZL}	Enable Time	5.0	4.6	8.7	13.7	ns
t _{PZH}	TCK to TDO	5.0	2.8	6.8	11.5	115
t _{PLH}	Propagation Delay	5.0	2.8	6.3	10.7	
t _{PHL}	TCK to Data Out during Update-DR State		4.5	8.2	13.0	ns
t _{PLH}	Propagation Delay	5.0	3.3	7.2	12.2	ns
t _{PHL}	TCK to Data Out during Update-IR State	5.0	5.0	9.3	14.8	113
t _{PLH}	Propagation Delay	5.0	3.7	8.4	14.0	ns
t _{PHL}	TCK to Data Out during Test Logic Reset State	5.0	5.7	10.8	17.2	115
t _{PLZ}	Disable Time	5.0	2.8	7.6	13.9	
t _{PHZ}	TCK to Data Out during Update-DR State	5.0	3.5	8.4	14.5	ns
t _{PLZ}	Disable Time	5.0	3.6	8.7	15.1	ns
t _{PHZ}	TCK to Data Out during Update-IR State	5.0	3.8	9.2	15.9	115
t _{PLZ}	Disable Time	5.0	4.0	9.8	17.1	ns
t _{PHZ}	TCK to Data Out during Test Logic Reset State	5.0	4.2	9.9	16.6	115
t _{PZL}	Enable Time	5.0	4.4	9.3	15.5	
t _{PZH}	TCK to Data Out during Update-DR State	5.0	3.0	7.5	13.3	ns
t _{PZL}	Enable Time	5.0	5.2	10.7	17.4	ns
t _{PZH}	TCK to Data Out during Update-IR State	5.0	3.9	9.0	15.4	115
t _{PZL}	Enable Time	5.0	5.7	12.0	19.8	ns
t _{PZH}	TCK to Data Out during Test Logic Reset State	5.0	3.0	10.2	17.6	115

Note 6: Voltage Range $5.0V\pm0.5V$

Note: All Propagation Delays involving TCK are measured from the falling edge of TCK.

Parameter Setup Time Data to TCK (Note 8) Hold Time Data to TCK (Note 8) Setup Time, H or L G1, G2 to TCK (Note 9)		(V) (Note 7) 5.0 5.0	CL = 50 pF Guaranteed Minimum 4.8 2.5	Units ns
Data to TCK (Note 8) Hold Time Data to TCK (Note 8) Setup Time, H or L		(Note 7) 5.0	4.8	ns
Data to TCK (Note 8) Hold Time Data to TCK (Note 8) Setup Time, H or L				ns
Hold Time Data to TCK (Note 8) Setup Time, H or L				115
Data to TCK (Note 8) Setup Time, H or L		5.0	2.5	
Setup Time, H or L		5.0		ns
				115
G1, G2 to TCK (Note 9)		5.0	4.1	ns
Hold Time, H or L		5.0	1.7	ns
TCK to <u>G1</u> , <u>G2</u> (Note 9)				
•		5.0	4.2	ns
		5.0	2.3	ns
		5.0	3.8	ns
		5.0	2.3	ns
•		5.0	8.7	ns
		5.0	1.5	ns
•		5.0	6.7	ns
		5.0	5.0	ns
	н		10.2	
		5.0		ns
Maximum TCK				
Clock Frequency		5.0	50	MHz
Wait Time,				
Power Up to TCK		5.0	100	ns
Power Down Delay		0.0	100	ms
ng pertains to BSR 74 and 78 only. ing pertains to BSR 75 and 79 only. ing pertains to BSR 72, 73, 76 and 77 only.			35, 36–44, 45–53, 54–62, 63–71)	
Parameter	Тур	Units	Conditions, T ₄	_= 25°C
Input Capacitance		۶a		
2) Output Capacitance	13.7	pF	$V_{CC} = 5.0V (A_n, B_n)$	
	Clock Frequency Wait Time, Power Up to TCK Power Down Delay ge Range 5.0V ± 0.5V g pertains to the TYPE1 BSR and TYPE2 BSR after the bu g pertains to BSR 74 and 78 only. ng pertains to BSR 75 and 79 only. ng pertains to BSR 72, 73, 76 and 77 only. t Timing Delays involving TCK are measured from the rising itance	DIR1, DIR2 to TCK (Note 10) Hold Time, H or L TCK to DIR1, DIR2 (Note 10) Setup Time Internal OE to TCK (Note 11) Hold Time, H or L TCK to Internal OE (Note 10) Setup Time, H or L TMS to TCK Hold Time, H or L TCK to TMS Setup Time, H or L TCK to TMS Setup Time, H or L TCK to TDI Pulse Width TCK: Hold Time, Power Up to TCK Power Up to TCK Power Down Delay ge Range 5.0V ± 0.5V g pertains to BSR 74 and 78 only. ng pertains to BSR 72, 73, 76 and 77 only. t Timing Delays involving TCK are measured from the rising edge of TCH itance Parameter Typ	DIR1, DIR2 to TCK (Note 10) 5.0 Hold Time, H or L 5.0 TCK to DIR1, DIR2 (Note 10) 5.0 Setup Time 5.0 Internal OE to TCK (Note 11) 5.0 Hold Time, H or L 5.0 TCK to Internal OE (Note 10) 5.0 Setup Time, H or L 5.0 TCK to Internal OE (Note 10) 5.0 Setup Time, H or L 5.0 TCK to TMS 5.0 Setup Time, H or L 5.0 TCK to TMS 5.0 Setup Time, H or L 5.0 TCK to TMS 5.0 Value, H or L 5.0 TCK to TDI 5.0 Pulse Width TCK: H L 5.0 Wairuum TCK 5.0 Clock Frequency 5.0 Wait Time, 5.0 Power Up to TCK 5.0 Power Up to TCK 5.0 Power Down Delay 0.0 gertains to BSR 75 and 79 only. 18-26, 27- ng pertains to BSR 75 and 79 only. 17 ng pertains to BSR 75 and 79 only. 17	DIR1, DIR2 to TCK (Note 10) 5.0 4.2 Hold Time, H or L 5.0 2.3 TCK to DIR1, DIR2 (Note 10) 5.0 3.8 Internal OE to TCK (Note 11) 5.0 3.8 Hold Time, H or L 5.0 2.3 TCK to Internal OE (Note 11) 5.0 3.8 Hold Time, H or L 5.0 2.3 TCK to Internal OE (Note 10) 5.0 2.3 Setup Time, H or L 5.0 8.7 TMS to TCK 5.0 1.5 Setup Time, H or L 5.0 6.7 TCK to TMS 5.0 1.5 Setup Time, H or L 5.0 5.0 TCK to TMS 5.0 6.7 Pulse Width TCK: H 5.0 5.0 TCK to TDI 5.0 5.0 5.0 Pulse Width TCK: H 5.0 8.5 Maximum TCK 5.0 5.0 5.0 Clock Frequency 0.0 100 9 Parage 5.0V ± 0.5V g pertains to the TYPE1 BSR and TYPE2 BSR afte

Downloaded from <u>Elcodis.com</u> electronic components distributor