FAIRCHILD				December 1993 Revised January 2001
SEMICONDபСTロRTM				
SCAN182245A				
Non-Inverting Transceiver				
General Description Features				
The SCAN182245A is a high performance BiCMOS bidirectional line driver featuring separate data inputs organized into dual 9 -bit bytes with byte-oriented output enable and direction control signals. This device is compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture with the incorporation of the defined boundary-scan test logic and test access port consisting of Test Data Input (TDI), Test Data Out (TDO), Test Mode Select (TMS), and Test Clock (TCK). - High performance BiCMOS technology - 25Ω series resistors in outputs eliminate the need for external terminating resistors - Dual output enable control signals - 3-STATE outputs for bus-oriented applications - 25 mil pitch SSOP (Shrink Small Outline Package) - IEEE 1149.1 (JTAG) Compliant ■ Includes CLAMP, IDCODE and HIGHZ instructions - Additional instructions SAMPLE-IN, SAMPLE-OUT and EXTEST-OUT ■ Power Up 3-STATE for hot insert - Member of Fairchild's SCAN Products				
Ordering Code:				
Order Number	Package Number		Pack	Description
SCAN182245ASSC	MS56A	56-Lead Shrink Sm	Outline Packa	(SSOP), JEDEC MO-118, 0.300 Wide
SCAN182245AMTD	MTD56	56-Lead Thin Shrink	mall Outline P	kage (TSSOP), JEDEC MO-153, 6.1mm Wide
Devices also available in Connection	and Reel. Sp iagram	cify by appending the suffix lett	X" to the ordering Pin Desc	e. iptions

www.fairchildsemi.com

Description of BOUNDARY-SCAN Circuitry

The scan cells used in the BOUNDARY-SCAN register are one of the following two types depending upon their location. Scan cell TYPE1 is intended to solely observe system data, while TYPE2 has the additional ability to control system data.
Scan cell TYPE1 is located on each system input pin while scan cell TYPE2 is located at each system output pin as well as at each of the two internal active-high output enable signals. AOE controls the activity of the A-outputs while BOE controls the activity of the B-outputs. Each will activate their respective outputs by loading a logic high.
The BYPASS register is a single bit shift register stage identical to scan cell TYPE1. It captures a fixed logic low.

Bypass Register Scan Chain Definition
Logic 0

SCAN182245A Product IDCODE (32-Bit Code per IEEE 1149.1)

Versio \mathbf{n}	Entity	Part	Manufacture \mathbf{r} ID	Required
by 1149.1				
0000	111111	00000000 0	00000001111	1
MSB				MSB

The INSTRUCTION register is an 8-bit register which captures the default value of 10000001 (SAMPLE/PRELOAD) during the CAPTURE-IR instruction command. The benefit of capturing SAMPLE/PRELOAD as the default instruction during CAPTURE-IR is that the user is no longer required to shift in the 8-bit instruction for SAMPLE/PRELOAD. The sequence of: CAPTURE-IR \rightarrow EXIT1-IR \rightarrow UPDATE-IR will update the SAMPLE/PRELOAD instruction. For more information refer to the section on instruction definitions.

Instruction Code	Instruction
00000000	EXTEST
10000001	SAMPLE/PRELOAD
10000010	CLAMP
00000011	HIGH-Z
01000001	SAMPLE-IN
01000010	SAMPLE-OUT
00100010	EXTEST-OUT
10101010	IDCODE
11111111	BYPASS
All Others	BYPASS

www.fairchildsemi.com

SCAN ABT Live Insertion and Power Cycling Characteristics

SCAN ABT is intended to serve in Live Insertion backplane applications. It provides 2nd Level Isolation ${ }^{1}$ which indicates that while external circuitry to control the output enable pin is unnecessary, there may be a need to implement differential length backplane connector pins for V_{CC} and GND. As well, pre-bias circuitry for backplane pins may be necessary to avoid capacitive loading effects during live insertion.
SCAN ABT provides control of output enable pins during power cycling via the circuit in Figure 1. It essentially controls the \bar{G}_{n} pin until V_{CC} reaches a known level.
During power-up, when V_{CC} ramps through the 0.0 V to 0.7 V range, all internal device circuitry is inactive, leaving output and I / O pins of the device in high impedance. From approximately 0.8 V to $1.8 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$, the Power-On-Reset circuitry, (POR), in Figure 1 becomes active and maintains device high impedance mode. The POR does this by providing a low from its output that resets the flip-flop The output, \bar{Q}, of the flip-flop then goes high and disables the NOR gate from an incidental low input on the $\overline{\mathrm{G}}_{\mathrm{n}}$ pin. After 1.8 V V_{CC}, the POR circuitry becomes inactive and ceases to
control the flip-flop. To bring the device out of high impedance, the $\overline{\mathrm{G}}_{\mathrm{n}}$ input must receive an inactive-to-active transition, a high-to-low transition on $\overline{\mathrm{G}}_{\mathrm{n}}$ in this case to change the state of the flip-flop. With a low on the \bar{Q} output of the flip-flop, the NOR gate is free to allow propagation of a \bar{G}_{n} signal.
During power-down, the Power-On-Reset circuitry will become active and reset the flip-flop at approximately 1.8 V V_{CC}. Again, the Q output of the flip-flop returns to a high and disables the NOR gate from inputs from the \bar{G}_{n} pin. The device will then remain in high impedance for the remaining ramp down from 1.8 V to $0.0 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.
Some suggestions to help the designer with live insertion issues:

- The \bar{G}_{n} pin can float during power-up until the Power-On-Reset circuitry becomes inactive.
- The \bar{G}_{n} pin can float on power-down only after the Power-On-Reset has become active.
The description of the functionality of the Power-On-Reset circuitry can best be described in the diagram of Figure 2.

FIGURE 1.

${ }^{1}$ Section 7, "Design Consideration for Fault Tolerant Backplanes", Application Note AN-881.
SCAN ABT includes additional power-on reset circuitry not otherwise included in ABT devices.
FIGURE 2.

Absolute Maximum Ratings(Note 2)		Recommended Operating Conditions
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Free Air Ambient Temperature $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Supply Voltage +4.5 V to +5.5 V
$\mathrm{V}_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V	Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
Input Voltage (Note 3)	-0.5 V to +7.0 V	Data Input $\quad 50 \mathrm{mV} / \mathrm{ns}$
Input Current (Note 3)	-30 mA to +5.0 mA	Enable Input $20 \mathrm{mV} / \mathrm{ns}$
Voltage Applied to Any Output in the Disabled or		
Power-Off State	-0.5 V to +5.5 V	
in the HIGH State	-0.5 V to V_{CC}	
Current Applied to Output in LOW State (Max)	Twice the Rated $\mathrm{IOL}^{(m A)}$	Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
DC Latchup Source Current	$-500 \mathrm{~mA}$	Note 3: Either voltage limit or current limit is sufficient to protect inputs.
Over Voltage Latchup (I/O)	10 V	
ESD (HBM) Min.	2000 V	

DC Electrical Characteristics

AC Electrical Characteristics Normal Operation:						
Symbol	Parameter	V_{Cc} (V) (Note 5)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			Units
			Min	Typ	Max	
$\begin{aligned} & \overline{t_{\text {PLH }}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation Delay A to B, B to A	5.0	$\begin{aligned} & \hline 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.1 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Disable Time	5.0	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & \hline 8.6 \\ & 8.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Enable Time	5.0	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.6 \end{aligned}$	$\begin{aligned} & \hline 9.1 \\ & 8.2 \end{aligned}$	ns
Note 5: Voltage Range $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ AC Electrical Characteristics Scan Test Operation						
Symbol	Parameter	V_{CC}(V)(Note 6)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			Units
			Min	Typ	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay TCK to TDO	5.0	$\begin{aligned} & \hline 2.9 \\ & 4.2 \end{aligned}$	$\begin{aligned} & \hline 6.1 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 10.2 \\ & 12.1 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Disable Time TCK to TDO	5.0	$\begin{aligned} & \hline 2.1 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \hline 5.9 \\ & 7.4 \end{aligned}$	$\begin{aligned} & \hline 10.7 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Enable Time TCK to TDO	5.0	$\begin{aligned} & \hline 4.6 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \hline 8.7 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 13.7 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay TCK to Data Out during Update-DR State	5.0	$\begin{aligned} & \hline 2.8 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 8.2 \end{aligned}$	$\begin{aligned} & \hline 10.7 \\ & 13.0 \end{aligned}$	ns
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay TCK to Data Out during Update-IR State	5.0	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 7.2 \\ & 9.3 \end{aligned}$	$\begin{aligned} & 12.2 \\ & 14.8 \end{aligned}$	ns
$\overline{\text { tpLH }}$ tpHL	Propagation Delay TCK to Data Out during Test Logic Reset State	5.0	$\begin{aligned} & \hline 3.7 \\ & 5.7 \end{aligned}$	$\begin{gathered} \hline 8.4 \\ 10.8 \end{gathered}$	$\begin{aligned} & \hline 14.0 \\ & 17.2 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Disable Time TCK to Data Out during Update-DR State	5.0	$\begin{aligned} & \hline 2.8 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 7.6 \\ & 8.4 \end{aligned}$	$\begin{aligned} & \hline 13.9 \\ & 14.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Disable Time TCK to Data Out during Update-IR State	5.0	$\begin{aligned} & \hline 3.6 \\ & 3.8 \end{aligned}$	$\begin{aligned} & \hline 8.7 \\ & 9.2 \end{aligned}$	$\begin{aligned} & \hline 15.1 \\ & 15.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Disable Time TCK to Data Out during Test Logic Reset State	5.0	$\begin{aligned} & \hline 4.0 \\ & 4.2 \end{aligned}$	$\begin{aligned} & \hline 9.8 \\ & 9.9 \end{aligned}$	$\begin{aligned} & \hline 17.1 \\ & 16.6 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Enable Time TCK to Data Out during Update-DR State	5.0	$\begin{aligned} & \hline 4.4 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 9.3 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 15.5 \\ & 13.3 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Enable Time TCK to Data Out during Update-IR State	5.0	$\begin{aligned} & \hline 5.2 \\ & 3.9 \end{aligned}$	$\begin{gathered} \hline 10.7 \\ 9.0 \end{gathered}$	$\begin{aligned} & \hline 17.4 \\ & 15.4 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Enable Time TCK to Data Out during Test Logic Reset State	5.0	$\begin{aligned} & \hline 5.7 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 12.0 \\ & 10.2 \end{aligned}$	$\begin{aligned} & \hline 19.8 \\ & 17.6 \end{aligned}$	ns
Note 6: Voltage Range $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$Note: All Propagation Delays involving TCK are measured from the falling edge of TCK.						

AC Operating Requirements Scan Test Operation				
Symbol	Parameter	$V_{C C}$ (V)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
		(Note 7)	Guaranteed Minimum	
 $\mathrm{ts}_{\text {S }}$ S D	Setup Time Data to TCK (Note 8)	5.0	4.8	ns
t_{H} H D	$\begin{aligned} & \hline \text { Hold Time } \\ & \text { Data to TCK (Note 8) } \end{aligned}$	5.0	2.5	ns
ts $\frac{S}{\mathrm{G}}$	Setup Time, H or L $\overline{\mathrm{G} 1}, \overline{\mathrm{G} 2}$ to TCK (Note 9)	5.0	4.1	ns
th H	Hold Time, H or L TCK to $\overline{\mathrm{G} 1}, \overline{\mathrm{G} 2}$ (Note 9)	5.0	1.7	ns
ts S	Setup Time, H or L DIR1, DIR2 to TCK (Note 10)	5.0	4.2	ns
t_{H} H T	Hold Time, H or L TCK to DIR1, DIR2 (Note 10)	5.0	2.3	ns
ts S	Setup Time Internal OE to TCK (Note 11)	5.0	3.8	ns
t H T	Hold Time, H or L TCK to Internal OE (Note 10)	5.0	2.3	ns
ts 	Setup Time, H or L TMS to TCK	5.0	8.7	ns
t H T	Hold Time, H or L TCK to TMS	5.0	1.5	ns
ts 	Setup Time, H or L TDI to TCK	5.0	6.7	ns
t_{H} H T	Hold Time, H or L TCK to TDI	5.0	5.0	ns
 ${ }_{W}$ P	Pulse Width TCK:	5.0	$\begin{gathered} 10.2 \\ 8.5 \end{gathered}$	ns
$\mathrm{f}_{\text {MAX }}$ M C	Maximum TCK Clock Frequency	5.0	50	MHz
te W P P	Wait Time, Power Up to TCK	5.0	100	ns
 t_{DN} P	Power Down Delay	0.0	100	ms
Note 7: Voltage Range $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ Note 8: Timing pertains to the TYPE1 BSR and TYPE2 BSR after the buffer (BSR 0-8, 9-17, 18-26, 27-35, 36-44, 45-53, 54-62, 63-7 Note 9: Timing pertains to BSR 74 and 78 only. Note 10: Timing pertains to BSR 75 and 79 only. Note 11: Timing pertains to BSR 72, 73, 76 and 77 only. Note: All Input Timing Delays involving TCK are measured from the rising edge of TCK. Capacitance				
Symbol	Parameter	Units	Conditions	$5^{\circ} \mathrm{C}$
C_{IN}	Input Capacitance	pF	$\mathrm{V}_{C C}=0.0 \mathrm{~V}\left(\overline{\mathrm{G}}_{\mathrm{n}}, \mathrm{DIR}_{\mathrm{n}}\right)$	
$\mathrm{C}_{\text {I/O }}$ (Note 12)) Output Capacitance	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$	
Note 12: $\mathrm{C}_{/ / \mathrm{O}}$ is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883B, Method 3012.				

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

$\rightarrow-0.5 \mathrm{TYP}$

$$
\begin{array}{|l|l|l|l|l|}
\hline \phi & 0.13 @(\mathrm{M} & \mathrm{A} & \mathrm{~B}(\mathrm{~S}) & \mathrm{C}(\mathrm{~S}) \\
\hline
\end{array}
$$

$0.09-0.20 \mathrm{TYP}-$

DETAIL A
TYPICAL
mTDS6 (REV B)
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1 mm Wide Package Number MTD56

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
