

Functional Description

The SCAN18245 consists of two sets of nine non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus-oriented applications. Direction pins (DIR1 and DIR2) LOW enables data from B Ports to A Ports, when

Block Diagrams

Note: BSR stands for Boundary Scan Register.

Inputs		A2 (0-8)	B2 (0-8)
$\overline{\text { G2 }}$	DIR2		
L	L	H	\leftarrow
L	L	L	\leftarrow
L	H	H	H
L	H	L	\rightarrow
H	X	Z	H

$\mathrm{X}=$ Immaterial
Z= High Impedance

HIGH enables data from A Ports to B Ports. The Output Enable pins ($\overline{\mathrm{G} 1}$ and $\overline{\mathrm{G} 2}$) when HIGH disables both A and B Ports by placing them in a high impedance condition.

Note: BSR stands for Boundary Scan Register.

Tap Controller

www.fairchildsemi.com

Boundary-Scan Register Definition Index

Bit No.	Pin Name	Pin No.	Pin Type	Scan Cell Type	
79	DIR1	3	Input	TYPE1	
78	G1	54	Input	TYPE1	
77	AOE_{1}		Internal	TYPE2	
76	BOE_{1}		Internal	TYPE2	Control
75	DIR2	26	Input	TYPE1	Signals
74	G2	31	Input	TYPE1	
73	AOE_{2}		Internal	TYPE2	
72	BOE_{2}		Internal	TYPE2	
71	A10	55	Input	TYPE1	
70	A1 ${ }_{1}$	53	Input	TYPE1	
69	Al_{2}	52	Input	TYPE1	
68	Al_{3}	50	Input	TYPE1	
67	$\mathrm{A1}_{4}$	49	Input	TYPE1	A1-in
66	Al_{5}	47	Input	TYPE1	
65	$\mathrm{A1}_{6}$	46	Input	TYPE1	
64	Al_{7}	44	Input	TYPE1	
63	A1 ${ }_{8}$	43	Input	TYPE1	
62	A_{2}	42	Input	TYPE1	
61	$\mathrm{A}_{1}{ }_{1}$	41	Input	TYPE1	
60	A_{2}	39	Input	TYPE1	
59	A_{2}	38	Input	TYPE1	
58	$\mathrm{A}_{2}{ }_{4}$	36	Input	TYPE1	A2-in
57	$\mathrm{A}_{2}{ }_{5}$	35	Input	TYPE1	
56	$\mathrm{A}_{2}{ }_{6}$	33	Input	TYPE1	
55	$\mathrm{A}_{2}{ }_{7}$	32	Input	TYPE1	
54	$\mathrm{A}^{2} 8$	30	Input	TYPE1	
53	B 10	2	Output	TYPE2	
52	$B 1_{1}$	4	Output	TYPE2	
51	$\mathrm{B1} 2_{2}$	5	Output	TYPE2	
50	B_{3}	7	Output	TYPE2	
49	$\mathrm{B1}_{4}$	8	Output	TYPE2	B1-out
48	$\mathrm{B1}_{5}$	10	Output	TYPE2	
47	B 16	11	Output	TYPE2	
46	B 17	13	Output	TYPE2	
45	$\mathrm{B1}_{8}$	14	Output	TYPE2	
44	$\mathrm{B2}_{0}$	15	Output	TYPE2	
43	B 21	16	Output	TYPE2	
42	B 22	18	Output	TYPE2	
41	B_{3}	19	Output	TYPE2	
40	$\mathrm{B2}_{4}$	21	Output	TYPE2	B2-out
39	B 25	22	Output	TYPE2	
38	B 26	24	Output	TYPE2	
37	B 27	25	Output	TYPE2	
36	$\mathrm{B2}_{8}$	27	Output	TYPE2	

Bit No. Pin Name Pin No. Pin Type Scan Cell Type					
35	B10	2	Input	TYPE1	
34	$\mathrm{B1} 1$	4	Input	TYPE1	
33	B 12	5	Input	TYPE1	
32	$\mathrm{B1} 3$	7	Input	TYPE1	
31	$\mathrm{B1}_{4}$	8	Input	TYPE1	B1-in
30	$\mathrm{B1} 5_{5}$	10	Input	TYPE1	
29	B 16	11	Input	TYPE1	
28	$\mathrm{B1} 7$	13	Input	TYPE1	
27	B18	14	Input	TYPE1	
26	B20	15	Input	TYPE1	
25	B 21	16	Input	TYPE1	
24	B 22	18	Input	TYPE1	
23	B_{3}	19	Input	TYPE1	
22	B24	21	Input	TYPE1	B2-in
21	B 25	22	Input	TYPE1	
20	B_{6}	24	Input	TYPE1	
19	B_{7}	25	Input	TYPE1	
18	B28	27	Input	TYPE1	
17	A_{1}	55	Output	TYPE2	
16	$\mathrm{A} 1_{1}$	53	Output	TYPE2	
15	Al_{2}	52	Output	TYPE2	
14	Al_{3}	50	Output	TYPE2	
13	$\mathrm{A1}_{4}$	49	Output	TYPE2	A1-out
12	Al_{5}	47	Output	TYPE2	
11	$\mathrm{A1}_{6}$	46	Output	TYPE2	
10	Al_{7}	44	Output	TYPE2	
9	$\mathrm{A1}_{8}$	43	Output	TYPE2	
8	A^{2}	42	Output	TYPE2	
7	A2 ${ }_{1}$	41	Output	TYPE2	
6	A_{2}	39	Output	TYPE2	
5	$\mathrm{A2}_{3}$	38	Output	TYPE2	
4	A_{2}	36	Output	TYPE2	A2-out
3	A_{2}	35	Output	TYPE2	
2	$\mathrm{A}^{2} 6$	33	Output	TYPE2	
1	$\mathrm{A}_{2}{ }_{7}$	32	Output	TYPE2	
0	A28	30	Output	TYPE2	

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Input Diode Current ($\mathrm{I}_{1 / \mathrm{K}}$)	
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA
DC Output Voltage (V_{0})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Source/Sink Current (1)	$\pm 70 \mathrm{~mA}$
DC V CC or Ground Current	
Per Output Pin	$\pm 70 \mathrm{~mA}$
Junction Temperature	
SSOP	$+140^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD (Min)	2000 V

Recommended Operating Conditions

Supply Voltage (V_{CC})
SCAN Products
4.5 V to 5.5 V

Input Voltage $\left(\mathrm{V}_{\mathrm{I}}\right)$ OV to V_{CC}
Output Voltage (V_{O})
0 V to V_{Cc}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$ $125 \mathrm{mV} / \mathrm{ns}$
$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
$\mathrm{V}_{\mathrm{Cc}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, with out exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does no recommend operation of SCAN circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Input Voltage	4.5 5.5	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Output Voltage (Note 2)	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 3.15 \\ & 4.15 \end{aligned}$	$\begin{aligned} & 3.15 \\ & 4.15 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \end{aligned}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$		V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Output Voltage (Note 2)	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 0.55 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IOL}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 0.55 \\ & 0.55 \end{aligned}$		V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{ma} \end{aligned}$
$\underline{\mathrm{IN}}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
I_{IN} TDI, TMS	Maximum Input Leakage	5.5		2.8	3.6	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$
				-385	-385	$\mu \mathrm{A}$	$\mathrm{V}_{1}=$ GND
	Minimum Input Leakage	5.5		-160	-160	$\mu \mathrm{A}$	$\mathrm{V}_{1}=$ GND
IoLD	Minimum Dynamic Output Current (Note 3)	5.5		94	94	mA	$\mathrm{V}_{\text {OLD }}=0.8 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$				-40	-40	mA	$\mathrm{V}_{\mathrm{OHD}}=2.0 \mathrm{~V}$ Min
$\mathrm{I}_{\text {OZT }}$	Maximum I/O Leakage Current	5.5		± 0.6	± 6.0	$\mu \mathrm{A}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{H}} \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
Ios	Output Short Circuit Current	5.5		-100	-100	mA (min)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
I_{CC}	Maximum Quiescent Supply Current	5.5		16.0	88	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \\ & \text { TDI, TMS }=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
		5.5		750	820	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \\ & \text { TDI, TMS = GND } \end{aligned}$

DC Electrical Characteristics (Continued)

Symbol	Parameter	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
		(V)	Typ	Guaranteed Limits			
${ }_{\text {cct }}$	Maximum I ${ }_{\text {CC }}$ Per Input	5.5		2.0	2.0	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
		5.5		2.15	2.15	mA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{Cc}}-2.1 \mathrm{~V}$ TDI/TMS Pin, test one with the other floating

Note 2: All outputs loaded; thresholds associated with output under test.
Note 3: Maximum test duration 2.0 ms , one output loaded at a time.

Noise Specifications

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
			Typ		eed Limits	
$\mathrm{V}_{\text {OLP }}$	Maximum HIGH Output Noise (Note 5)(Note 6)	5.0	1.0	1.5		V
$\mathrm{V}_{\text {OLV }}$	Minimum LOW Output Noise (Note 5)(Note 6)	5.0	-0.6	-1.2		V
$\mathrm{V}_{\text {OHP }}$	Maximum Overshoot (Note 4)(Note 6)	5.0	$\mathrm{V}_{\mathrm{OH}}+1.0$	$\mathrm{V}_{\mathrm{OH}}+1.5$		V
$\mathrm{V}_{\text {OHV }}$	Minimum V_{Cc} Droop (Note 4)(Note 6)	5.0	$\mathrm{V}_{\mathrm{OH}^{-1.0}}$	$\mathrm{V}_{\mathrm{OH}^{-1.8}}$		V
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Dynamic Input Voltage Level (Note 4)(Note 7)	5.5	1.6	2.0	2.0	V
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Dynamic Input Voltage Level (Note 4)(Note 7)	5.5	1.4	0.8	0.8	V

Note 5: Maximum number of outputs that can switch simultaneously is n. ($n-1$) outputs are switched LOW and one output held LOW.
Note 6: Maximum number of outputs that can switch simultaneously is n. ($n-1$) outputs are switched HIGH and one output held HIGH.
Note 7: Maximum number of data inputs (n) switching. ($n-1$) input switching 0 V to 3 V . Input under test switching 3 V to threshold ($\mathrm{V}_{\text {ILD }}$).

AC Electrical Characteristics

Normal Operation

Symbol	Parameter	V_{CC} (V) (Note 8)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline t_{\text {PLH }}, \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay A to B, B to A	5.0	$\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$		$\begin{aligned} & 7.9 \\ & 7.9 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.8 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Disable Time	5.0	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$		$\begin{aligned} & \hline 8.6 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Enable Time	5.0	$\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$		$\begin{aligned} & 11.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.5 \end{gathered}$	ns

Note 8: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
Note: All Input Timing Delays involving TCK are measured from the rising edge of TCK.

AC Electrical Characteristics Scan Test Operation								
Symbol	Parameter		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline t_{\text {PLH }}, \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay TCK to TDO	5.0	$\begin{aligned} & \hline 2.8 \\ & 2.8 \end{aligned}$		$\begin{aligned} & \hline 13.2 \\ & 13.2 \end{aligned}$	$\begin{aligned} & \hline 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \hline 14.5 \\ & 14.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Disable Time TCK to TDO	5.0	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \hline 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 11.9 \\ & 11.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PZL }}, \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Enable Time TCK to TDO	5.0	$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$		$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 15.8 \\ & 15.8 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay TCK to Data Out During Update-DR State	5.0	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 18.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 19.8 \\ & 19.8 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\text {PLH }}, \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay TCK to Data Out During Update-IR State	5.0	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \hline 18.6 \\ & 18.6 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 20.2 \\ & 20.2 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	$\begin{aligned} & \hline 4.4 \\ & 4.4 \end{aligned}$		$\begin{aligned} & \hline 19.9 \\ & 19.9 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline 21.5 \\ & 21.5 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\text {PLZ }}, \\ & t_{\text {PHZ }} \end{aligned}$	Propagation Delay TCK to Data Out During Update-DR State	5.0	$\begin{aligned} & \hline 3.2 \\ & 3.2 \end{aligned}$		$\begin{aligned} & \hline 16.4 \\ & 16.4 \end{aligned}$	$\begin{aligned} & \hline 3.2 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \hline 18.2 \\ & 18.2 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\text {PLZ }}, \\ & t_{\text {PHZ }} \end{aligned}$	Propagation Delay TCK to Data Out During Update-IR State	5.0	$\begin{aligned} & \hline 2.8 \\ & 2.8 \end{aligned}$		$\begin{aligned} & \hline 18.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & \hline 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \hline 19.3 \\ & 19.3 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\text {PHZ }} \end{aligned}$	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$		$\begin{aligned} & 18.4 \\ & 18.4 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 20.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Propagation Delay TCK to Data Out During Update-DR State	5.0	$\begin{aligned} & \hline 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \hline 18.9 \\ & 18.9 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 20.9 \\ & 20.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PZL }}, \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Propagation Delay TCK to Data Out During Update-IR State	5.0	$\begin{aligned} & \hline 3.2 \\ & 3.2 \end{aligned}$		$\begin{aligned} & 19.9 \\ & 19.9 \end{aligned}$	$\begin{aligned} & \hline 3.2 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \hline 21.7 \\ & 21.7 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	$\begin{aligned} & \hline 3.6 \\ & 3.6 \end{aligned}$		$\begin{aligned} & 21.3 \\ & 21.3 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & \hline 23.3 \\ & 23.3 \end{aligned}$	ns
Note 9: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$. Note: All Input Timing Delays involving TCK are measured from the rising edge of TCK. Note: All Propagation Delays involving TCK are measured from the falling edge of TCK.								

AC Operating Requirements

Symbol	Parameter	V_{cc} (V) (Note 10)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Guaranteed Minimum		
t_{s}	Setup Time, H or L Data to TCK (Note 11)	5.0	0.0	0.0	ns
t_{H}	Hold Time, H or L TCK to Data (Note 11)	5.0	6.5	6.5	ns
t_{S}	$\begin{aligned} & \text { Setup Time, H or L } \\ & \overline{\mathrm{G} 1}, \overline{\mathrm{G} 2} \text { to TCK (Note 12) } \end{aligned}$	5.0	0.0	0.0	ns
t_{H}	Hold Time, H or L TCK to $\overline{\mathrm{G} 1}, \overline{\mathrm{G} 2}$ (Note 12)	5.0	4.0	4.0	ns
t_{s}	Setup Time, H or L DIR1, DIR2 to TCK (Note 13)	5.0	0.0	0.0	ns
t_{H}	$\begin{aligned} & \text { Hold Time, H or L } \\ & \text { TCK to DIR1, DIR2 (Note 13) } \end{aligned}$	5.0	4.0	4.0	ns
t_{S}	```Setup Time, H or L Internal AOE n, BOE n to TCK (Note 14)```	5.0	1.0	1.0	ns
t_{H}	Hold Time, H or L TCK to Internal AOE ${ }_{n}$, BOE $_{n}$ (Note 14)	5.0	4.0	4.0	ns
t_{s}	Setup Time, H or L TMS to TCK	5.0	7.0	7.0	ns
t_{H}	Hold Time, H or L TCK to TMS	5.0	2.0	2.0	ns
t_{s}	Setup Time, H or L TDI to TCK	5.0	1.0	1.0	ns
t_{H}	Hold Time, H or L TCK to TDI	5.0	3.5	3.5	ns
$\overline{t_{W}}$	Pulse Width	5.0	$\begin{gathered} 15.0 \\ 5.0 \end{gathered}$	$\begin{gathered} 15.0 \\ 5.0 \end{gathered}$	ns
$\mathrm{f}_{\text {MAX }}$	Maximum TCK Clock Frequency	5.0	25	25	MHz
$\overline{T_{P U}}$	Wait Time, Power Up to TCK	5.0	100	100	ns
T_{DN}	Power Down Delay	0.0	100	100	ms

Note 10: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
Note 11: Timing pertains to the TYPE1 BSR and TYPE2 BSR after the buffer (BSR 0-8, 9-17, 18-26, 27-35, 36-44, 45-53, 54-62, 63-71).
Note 12: Timing pertains to BSR 74 and 78 only.
Note 13: Timing pertains to BSR 75 and 79 only.
Note 14: Timing pertains to BSR 72, 73, 76 and 77 only.
Note: All Input Timing Delays involving TCK are measured from the rising edge of TCK.

Note 15: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-toHIGH, HIGH-to-LOW, etc.)
Note 16: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.
Note 17: 3-STATE delays are load dominated and have been excluded from the datasheet.
Note 18: The Output Disable Time is dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and has been excluded from the datasheet.
Note 19: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$), LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$), or any combination switching LOW-to-HIGH and/or HIGH to-LOW.

Capacitance

Symbol	Parameter	Typ	Units		Conditions
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	4	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{/ / \mathrm{O}}$	Input/Output Capacitance	20	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
C_{PD}	Power Dissipation Capacitance	41	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
