

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $V_{C C}$ Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Any Output in the Disable or
Power-Off State
in the HIGH State
Current Applied to Output
in LOW State (Max)

DC Latchup Source Current
Over Voltage Latchup (I/O)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$ $-500 \mathrm{~mA}$

Recommended Operating

 Conditions| Free Air Ambient Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |
| Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$ | |
| Data Input | $50 \mathrm{mV} / \mathrm{ns}$ |
| Enable Input | $20 \mathrm{mV} / \mathrm{ns}$ |
| Clock Input | $100 \mathrm{mV} / \mathrm{ns}$ |
| | |
| | |

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$ (Non I/O Pins)
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$					$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ (Non-I/O Pins) All Other Pins Grounded
$\overline{I_{H}}$	Input HIGH Current			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { Non-I/O Pins) (Note 3) } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { (Non-I/O Pins) } \end{aligned}$
$\mathrm{I}_{\text {BVI }}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$ ((Non-I/O Pins)
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (1/O)			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
ILL	Input LOW Current			$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { Non-I/O Pins) (Note 3) } \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \text { (Non-I/O Pins) } \end{aligned}$
$\mathrm{I}_{\mathrm{IH}+} \mathrm{I}_{\text {OZH }}$	Output Leakage Current			10	$\mu \mathrm{A}$	0V-5.5V	$\begin{aligned} & V_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) ; \\ & \overline{\mathrm{OEA}} \text { or } \overline{\mathrm{OEB}}=2.0 \mathrm{~V} \end{aligned}$
$I_{\text {IL }}+I_{\text {OZL }}$	Output Leakage Current			-10	$\mu \mathrm{A}$	0V-5.5V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) ; \\ & \overline{\mathrm{OEA}} \text { or } \overline{\mathrm{OEB}}=2.0 \mathrm{~V} \end{aligned}$
Ios	Output Short-Circuit Current	-100		-275	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right)$
${ }^{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
I_{zz}	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) ;$ All Others GND
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current			250	$\mu \mathrm{A}$	Max	All Outputs HIGH
$\mathrm{I}_{\text {CLL }}$	Power Supply Current			30	mA	Max	All Outputs LOW
$\mathrm{I}_{\text {ccz }}$	Power Supply Current			50	$\mu \mathrm{A}$	Max	Outputs 3-STATE; All Others GND
${ }^{\text {CCT }}$	Additional $\mathrm{I}_{\text {cc }} / \mathrm{ln}$ put			2.5	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \text {; All Others } \\ & \text { at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$
${ }^{\text {CCD }}$	Dynamic I_{CC} No Load (Note 4)			0.18	mA/MHz	Max	Outputs Open $\overline{\mathrm{OEA}}$ or $\overline{\mathrm{OEB}}=\mathrm{GND}$, Non-I/O = GND or VCC One Bit toggling, 50% duty cycle (Note 4)

Note 3: Guaranteed, but not tested.
Note 4: For 8-bit toggling, $\mathrm{I}_{\mathrm{CCD}}<1.4 \mathrm{~mA} / \mathrm{MHz}$.

Extended AC Electrical Characteristics (SOIC Package)								
Symbol	Parameter	$\begin{array}{r} \mathrm{T}_{\mathrm{A}}=-6 \\ \mathrm{~V}_{\mathrm{CC}}= \\ \mathrm{C} \\ 8 \text { Outp } \end{array}$	to $+85^{\circ} \mathrm{C}$ V to 5.5 V 50 pF Switching e8)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ \text { (Note } 9) \end{gathered}$		$\begin{array}{r} \mathrm{T}_{\mathrm{A}}=-4 \\ \mathrm{~V}_{\mathrm{CC}}= \\ \mathrm{C}_{\mathrm{L}} \\ 8 \text { Outp } \end{array}$	$+85^{\circ} \mathrm{C}$ o 5.5V pF itching 0)	Units
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CPA or CPB to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	6.0 6.0	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OEA}}$ or $\overline{\mathrm{OEB}}$ to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Disable Time $\overline{O E A}$ or $\overline{O E B}$ to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	6.0 6.0	(Note 11)		(Note 11)		ns
Note 8: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.). Note 9: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only. Note 10: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. Note 11: The 3-STATE delays are dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and has been excluded from the datasheet. Skew (SOIC Package)								
Symbol	Parameter		$\begin{array}{r} \hline \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.6 \\ \mathrm{C}_{\mathrm{L}}=5 \\ 8 \text { Outputs } \\ \text { (Not } \\ \mathrm{Me} \end{array}$	$\begin{aligned} & \hline \mathrm{o}+85^{\circ} \mathrm{C} \\ & -5.5 \mathrm{~V} \\ & \mathrm{pF} \\ & \text { witching } \\ & \text { 12) } \end{aligned}$		$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & =4.5 \mathrm{~V} \\ & \mathrm{~L}=250 \end{aligned}$ puts Sw (Note 13) Max		Units
toshl (Note 14)	Pin to Pin Skew HL Transitions					1.5		ns
tosth (Note 14)	Pin to Pin Skew LH Transitions		1.			2.0		ns
$t_{P S}$ (Note 15)	Duty Cycle LH-HL Skew		2.			4.5		ns
tost (Note 14)	Pin to Pin Skew LH/HL Transitions		2			4.5		ns
$t_{P V}$ (Note 16)	Device to Device Skew LH/HL Transitions		2			5.0		ns
Note 12: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.). Note 13: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. Note 14: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$), LOW to HIGH ($\mathrm{t}_{\mathrm{OSLH}}$), or any combination switching LOW-to-HIGH and/or HIGH-toLOW (tost). This specification is guaranteed but not tested. Note 15: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested. Note 16: Propagation delay variation for a given set of conditions (i.e., temperature and $V_{C C}$) from device to device. This specification is guaranteed but not tested. Capacitance								
Symbo	I Parameter		Typ				ditions $=25^{\circ} \mathrm{C}$	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5			OV (No		
$\mathrm{C}_{\text {I/O }}$ (Note 17)) Output Capacitance		11			5.0V (A		
Note 17: $\mathrm{C}_{/ / \mathrm{O}}$ is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.								

74ABT2952 Octal Registered Transceiver
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC24
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
