
Pin Assignment fo SSOP and TSSOP

[^0]

Absolute Maximum Ratings(Note 2)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Input Diode Current (I_{IK})	
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA
DC Output Diode Current (l_{OK})	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA
DC Output Voltage (V_{O})	-0.5 V to $\mathrm{V}_{C C}+0.5 \mathrm{~V}$
DC Output Source/Sink Current (lo)	$\pm 50 \mathrm{~mA}$
DC V_{CC} or Ground Current per Output Pin	$\pm 50 \mathrm{~mA}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.5 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{l}}\right)$	OV to V_{CC}
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$	$125 \mathrm{mV} / \mathrm{ns}$
V_{IN} from 0.8 V to 2.0 V	
$\mathrm{~V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	
Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, with- out exception to ensure that the system design is reliable over its power supply, temperature, and output/innut loading variables. Fairchild does not recommend operation of FACT ™ circuits outside databook specifications.	

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}} \mathrm{IH}$	Minimum HIGH Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Minimum HIGH Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 3) \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OL}$	Maximum LOW Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 3) \end{aligned}$
$\overline{I_{\text {OZT }}}$	Maximum I/O Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
$\overline{I_{\mathrm{IN}}}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, G \mathrm{GND}$
$\overline{I_{\text {CCT }}}$	Maximum I ${ }_{\text {CC }} /$ Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
I_{CC}	Max Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
IOLD	Minimum Dynamic Output Current (Note 4)	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$					-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$\mathrm{V}_{\text {OLP }}$	Quick Output Maximum Dynamic V_{OL}	5.0	0.5	0.8		V	Figure 1, Figure 2 (Note 6)(Note 7)
$\mathrm{V}_{\text {OLV }}$	Quick Output Minimum Dynamic V_{OL}	5.0	-0.5	-0.8		V	Figure 1, Figure 2 (Note 6)(Note 7)
$\mathrm{V}_{\text {OHP }}$	Maximum Overshoot	5.0	$\mathrm{V}_{\mathrm{OH}}+1.0$	$\mathrm{V}_{\mathrm{OH}}+1.5$		V	Figure 1, Figure 2 (Note 5)(Note 7)
$\overline{\mathrm{V}_{\text {OHV }}}$	Minimum V_{CC} Droop	5.0	$\mathrm{V}_{\mathrm{OH}}-1.0$	$\mathrm{V}_{\mathrm{OH}}-1.8$		V	Figure 1, Figure 2 (Note 5)(Note 7)
$\overline{\mathrm{V}_{\mathrm{IHD}}}$	Minimum HIGH Dynamic Input Voltage Level	5.0	1.7	2.0		V	(Note 5)(Note 8)
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Dynamic Input Voltage Level	5.0	1.2	0.8		V	(Note 5)(Note 8)
Note 3: All outputs loaded; thresholds associated with output under test. Note 4: Maximum test duration 2.0 ms ; one output loaded at a time. Note 5: Worst case package.							

www.fairchildsemi.com

DC Electrical Characteristics
 （Continued）

Note 6：Maximum number of outputs that can switch simultaneously is n ．$(\mathrm{n}-1)$ outputs are switched LOW and one output held LOW Note 7：Maximum number of outputs that can switch simultaneously is n ．（ $n-1$ ）outputs are switched HIGH and one output held HIGH． Note 8：Maximum number of data inputs（ n ）switching．$\left(n-1\right.$ ）inputs switching $0 V$ to $3 V$（ACTQ）．Input under test switching 3V to threshold（ $V_{\text {ILD }}$ ）．

AC Electrical Characteristics

Symbol	Parameter	V_{Cc} （V） （Note 9）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\overline{t_{\text {PHL }}}$ $t_{\text {PLH }}$	Propagation Delay Clock to Bus	5.0	$\begin{aligned} & \hline 4.6 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 9.4 \\ & 8.9 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.3 \end{aligned}$	$\begin{gathered} 10.1 \\ 9.7 \end{gathered}$	ns
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay Bus to Bus	5.0	$\begin{aligned} & 4.0 \\ & 4.1 \end{aligned}$	$\begin{aligned} & \hline 6.2 \\ & 6.4 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.6 \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 9.3 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PHL}}$ $t_{\text {PLH }}$	Propagation Delay Select to Bus （w／An or Bn HIGH or LOW）	5.0	$\begin{aligned} & 4.0 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.7 \end{aligned}$	$\begin{aligned} & \hline 8.9 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \hline 3.1 \\ & 3.2 \end{aligned}$	$\begin{gathered} 9.6 \\ 10.4 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Enable Time G to $\mathrm{An} / \mathrm{Bn}$	5.0	$\begin{aligned} & \hline 5.3 \\ & 4.6 \end{aligned}$	$\begin{aligned} & \hline 7.8 \\ & 6.9 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.4 \end{gathered}$	$\begin{aligned} & \hline 3.8 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 11.4 \\ & 10.2 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Disable Time G to $\mathrm{An} / \mathrm{Bn}$	5.0	$\begin{aligned} & 3.0 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.6 \end{aligned}$	$\begin{aligned} & \hline 8.6 \\ & 8.6 \end{aligned}$	ns
$\begin{aligned} & \overline{t_{P Z L}} \\ & t_{\mathrm{PZH}} \end{aligned}$	Enable Time DIR to An／Bn	5.0	$\begin{aligned} & 5.1 \\ & 4.6 \end{aligned}$	$\begin{aligned} & \hline 8.2 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 11.8 \\ & 10.8 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 12.7 \\ & 11.7 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Disable Time DIR to $\mathrm{An} / \mathrm{Bn}$	5.0	$\begin{aligned} & \hline 2.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 9.7 \end{aligned}$	ns

Note 9：Voltage Range 5.0 is $5.0 \mathrm{~V}+0.5 \mathrm{~V}$

AC Operating Requirements

Symbol	Parameter	V_{CC} （V）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
		（Note 10）	Guaranteed Minimum		
t_{s}	Setup Time，H or L Bus to Clock	5.0	3.0	3.0	ns
t_{H}	Hold Time，H or L Bus to Clock	5.0	1.5	1.5	ns
t_{W}	Clock Pulse Width H or L	5.0	4.0	4.0	ns

Note 10：Voltage Range 5.0 is $5.0 \mathrm{~V}+0.5 \mathrm{~V}$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests．The following is a brief description of the setup used to measure the noise characteristics of FACT．

Equipment：

Hewlett Packard Model 8180A Word Generator
PC－163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure：
1．Verify Test Fixture Loading：Standard Load 50 pF ， 500Ω ．
2．Deskew the HFS generator so that no two channels have greater than 150 ps skew between them．This requires that the oscilloscope be deskewed first．It is important to deskew the HFS generator channels before testing．This will ensure that the outputs switch simultaneously．
3．Terminate all inputs and outputs to ensure proper load－ ing of the outputs and that the input levels are at the correct voltage．
4．Set the HFS generator to toggle all but one output at a frequency of 1 MHz ．Greater frequencies will increase DUT heating and effect the results of the measure－ ment．

$\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\text {OLP }}$ are measured with respect to ground reference．
Input pulses have the following characteristics：$f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}$ ， $\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ ，skew $<150 \mathrm{ps}$ ．
FIGURE 1．Quiet Output Noise Voltage Waveforms
5．Set the word generator input levels at OV LOW and 3 V HIGH for ACT devices and OV LOW and 5V HIGH for AC devices．Verify levels with an oscilloscope．
$\mathrm{V}_{\text {OLP }} / \mathrm{V}_{\text {OLV }}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$ ：
－Determine the quiet output pin that demonstrates the greatest noise levels．The worst case pin will usually be the furthest from the ground pin．Monitor the output volt－ ages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture．Do not use an active FET probe．
－Measure $V_{\text {OLP }}$ and $V_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable．Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case transition for active and enable．
－Verify that the GND reference recorded on the oscillo－ scope has not drifted to ensure the accuracy and repeat－ ability of the measurements．
$V_{\text {ILD }}$ and $V_{\text {IHD }}$ ：
－Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture．Do not use an active FET probe．
－First increase the input LOW voltage level， V_{IL} ，until the output begins to oscillate or steps out a min of 2 ns ． Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits，or on output HIGH levels that exceed V_{IH} limits．The input LOW voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {ILD }}$ ．
－Next decrease the input HIGH voltage level， V_{IH} ，until the output begins to oscillate or steps out a min of 2 ns ． Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits，or on output HIGH levels that exceed V_{IH} limits．The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {IHD }}$ ．
－Verify that the GND reference recorded on the oscillo－ scope has not drifted to ensure the accuracy and repeat－ ability of the measurements．

FIGURE 2．Simultaneous Switching Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL A
TYPICAL
MTDS6 (REV B)
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Fairchild does not assume ary responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at ary time without notice to change said circuitry and specifications.

[^0]: FACT $^{T M}$, Quiet Series ${ }^{T M}$, FACT Quiet Series ${ }^{T M}$ and GTO ${ }^{T M}$ are trademarks of Fairchild Semiconductor Corporation.

