FAIRCHILD

SEMICONDUCTOF

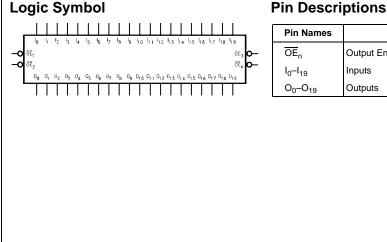
74VCX16827 Low Voltage 20-Bit Buffer/Line Driver with 3.6V Tolerant Inputs and Outputs

General Description

The VCX16827 contains twenty non-inverting buffers with 3-STATE outputs to be employed as a memory and address driver, clock driver, or bus oriented transmitter/ receiver carrying parity. The device is byte controlled. Each byte has NOR output enables for maximum control flexibility.

The 74VCX16827 is designed for low voltage (1.2V to 3.6V) V_{CC} applications with I/O capability up to 3.6V.

The 74VCX16827 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.


Features

- 1.2V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- t_{PD}
 - 2.5 ns max for 3.0V to 3.6V V_{CC}
- Power-off high impedance inputs and outputs
- Supports live insertion and withdrawal (Note 1)
- Static Drive (I_{OH}/I_{OL})
 - ±24 mA @ 3.0V V_{CC}
- Uses patented noise/EMI reduction circuitry
- Latch-up performance exceeds 300 mA
- ESD performance:
 - Human body model > 2000V
 - Machine model > 200V

Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description			
74VCX16827MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide			
Devices also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

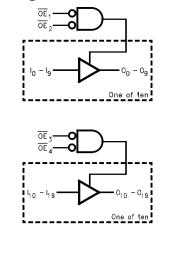
Pin Names	Description
OE n	Output Enable Input (Active LOW)
I ₀ —I ₁₉	Inputs
O ₀ -O ₁₉	Outputs

© 2002 Fairchild Semiconductor Corporation DS500131

74VCX16827

Truth Tables

	Inputs		Outputs
OE ₁	0E2	I ₀ —I ₉	0 ₀ –0 ₉
L	L	L	L
L	L	н	н
н	Х	Х	Z
Х	Н	х	Z
	Inputs		Outputs
	inputo		Calpato
OE ₃		I0-I9	O ₁₀ –O ₁₉
OE ₃		l₀–l9 ∟	
-	OE ₄		O ₁₀ -O ₁₉
L	OE ₄	L	0 ₁₀ -0 ₁₉ L


H = HIGH Voltage Level

 $\begin{array}{l} \mbox{Lowel} \label{eq:lowel} \\ \mbox{X} = \mbox{Immaterial (HIGH or LOW, inputs may not float)} \\ \mbox{Z} = \mbox{High Impedance} \end{array}$

Functional Description

The 74VCX16827 contains twenty non-inverting buffers with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of each other. The control pins may be shorted together to obtain full 16-bit operation. The 3-STATE outputs are controlled by Output Enable (\overline{OE}_n) inputs. When \overline{OE}_1 , and \overline{OE}_2 are LOW, O_0 — O_{10} are in the 2-state mode. When either \overline{OE}_1 or $\overline{\text{OE}}_2$ are HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the inputs. The same applies for byte two with $\overline{\text{OE}}_3$ and $\overline{\text{OE}}_4.$

Logic Diagrams

www.fairchildsemi.com

2

Absolute Maximum Ra	Recommended Operating	
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 4)
DC Input Voltage (VI)	-0.5V to +4.6V	Power Supply
Output Voltage (V _O)		Operating
Outputs 3-STATED	-0.5V to +4.6V	Input Voltage
Outputs Active (Note 3)	–0.5V to V_{CC} + 0.5V	Output Voltage (V _O)
DC Input Diode Current (I_{IK}) $V_I < 0V$	–50 mA	Output in Active States
DC Output Diode Current (I _{OK})		Output in 3-STATE
V _O < 0V	–50 mA	Output Current in I _{OH} /I _{OL}
$V_{O} > V_{CC}$	+50 mA	$V_{CC} = 3.0V$ to 3.6V
DC Output Source/Sink Current		V _{CC} = 2.3V to 2.7V
(I _{OH} /I _{OL})	±50 mA	V _{CC} = 1.65V to 2.3V
DC V _{CC} or GND Current per		V _{CC} = 1.4V to 1.6V
Supply Pin (I _{CC} or GND)	±100 mA	$V_{CC} = 1.2V$
Storage Temperature Range (T _{STG})	-65°C to +150°C	Free Air Operating Temperature (T _A)
		Minimum Input Edge Rete (At/A)/)

74VCX16827

1.2V to 3.6V -0.3V to +3.6V

> 0V to V_{CC} 0.0V to 3.6V

±24 mA $\pm 18 \text{ mA}$ ±6 mA ±2 mA \pm 100 μA $-40^{\circ}C$ to $+85^{\circ}C$ erature (T_A) Minimum Input Edge Rate ($\Delta t/\Delta V$) $V_{\text{IN}} = 0.8 \text{V}$ to 2.0V, $V_{\text{CC}} = 3.0 \text{V}$ 10 ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat-ings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	v _{cc} (V)	Min	Max	Units
/ _{IH}	HIGH Level Input Voltage		2.7 - 3.6	2.0		
п	i norr zoro, mpar ronago		2.3 - 2.7	1.6		
			1.65 - 2.3	0.65 x V _{CC}		V
			1.4 - 1.6	0.65 x V _{CC}		•
			1.2	0.65 x V _{CC}		
VIL	LOW Level Input Voltage		2.7 - 3.6		0.8	
, IC	2011 2010 input ronage		2.3 - 2.7		0.7	
			1.65 - 2.3		0.35 x V _{CC}	V
			1.4 - 1.6		0.35 x V _{CC}	
			1.2		0.05 x V _{CC}	
V _{он}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 - 3.6	V _{CC} - 0.2		
- OH		$I_{OH} = -12 \text{ mA}$	2.7	2.2		
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		
		$I_{OH} = -100 \mu\text{A}$	2.3 - 2.7	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		V
		$I_{OH} = -18 \text{ mA}$	2.3	1.7		
		$I_{OH} = -100 \mu A$	1.65 - 2.3	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		
		I _{OH} = -100 μA	1.4 - 1.6	V _{CC} - 0.2		
		$I_{OH} = -2 \text{ mA}$	1.4	1.05		
		I _{OH} = -100 μA	1.2	V _{CC} - 0.2		

74VCX1682	
74VCX168	2
74VCX	ø
74VCX	ອ
4	~
4	$\mathbf{\times}$
4	
4	S
2	Š
2	-
N	4
	N

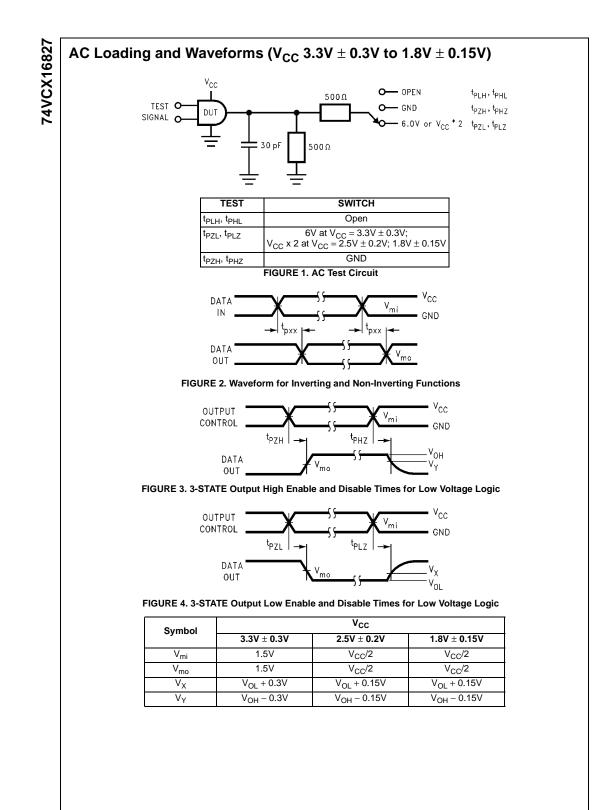
DC Electrical Characteristics (Continued)

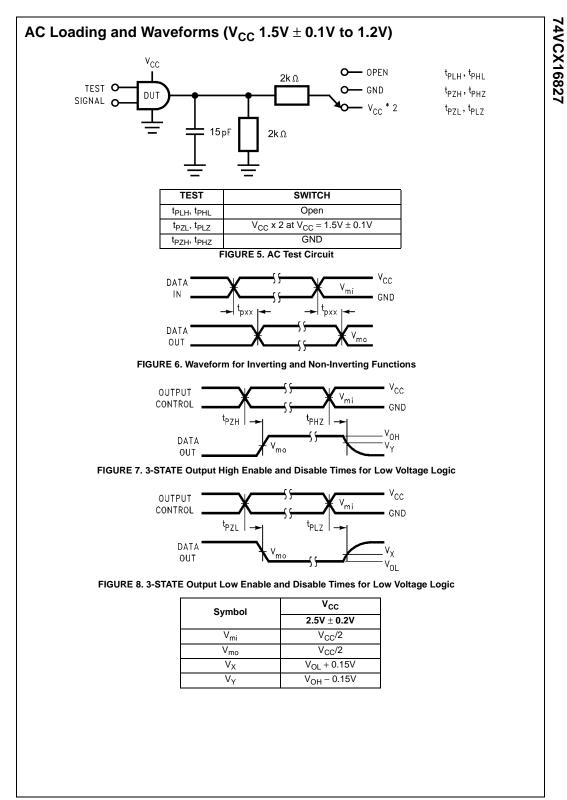
Symbol	Parameter	Conditions	v _{cc} (V)	Min	Max	Units
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7 - 3.6		0.2	
		I _{OL} = 12 mA	2.7		0.4	
		I _{OL} = 18 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
		$I_{OL} = 100 \ \mu A$	2.3 - 2.7		0.2	
		$I_{OL} = 12 \text{ mA}$	2.3		0.4	v
		I _{OL} = 18 mA	2.3		0.6	v
		$I_{OL} = 100 \ \mu A$	1.65 - 2.3		0.2	
		$I_{OL} = 6 \text{ mA}$	1.65		0.3	
		I _{OL} = 100 μA	1.4 - 1.6		0.2	
		$I_{OL} = 2 \text{ mA}$	1.4		0.35	
		$I_{OL} = 100 \ \mu A$	1.2		0.05	
l _l	Input Leakage Current	$0 \le V_I \le 3.6V$	1.2 - 3.6		±5.0	μA
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	1.2 – 3.6		±10	μA
		$V_I = V_{IH}$ or V_{IL}	1.2 - 3.0		10	μΛ
I _{OFF}	Power-OFF Leakage Current	$0 \le (V_I, V_O) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.2 - 3.6		20	
		$V_{CC} \leq (V_I, V_O) \leq 3.6V$ (Note 5)	1.2 - 3.6		±20	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 - 3.6		750	μA

Note 5: Outputs disabled or 3-STATE only.

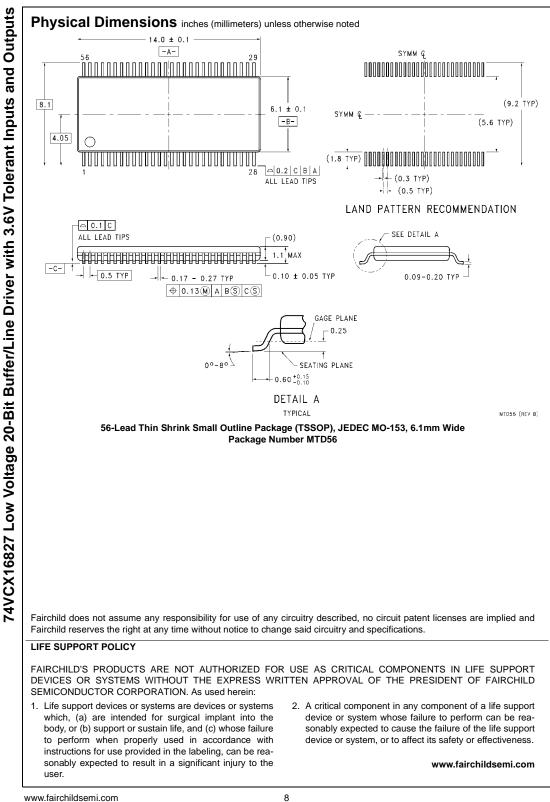
Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +30^{\circ}C to $		Units	Figure		
Symbol			(V)	Min	Max	Units	Number		
t _{PHL} ,	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	2.5				
t _{PLH}			2.5 ± 0.2	1.0	3.0		Figures 1, 2		
			1.8 ± 0.15	1.5	6.0	ns	., =		
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	12.0				Figures
			1.2	1.5	30		5, 6		
t _{PZL} ,	Output Enable Time	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	3.8				
t _{PZH}			2.5 ± 0.2	1.0	4.9		Figures 1, 3, 4		
			1.8 ± 0.15	1.5	9.8	ns			
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	19.6		Figures 5, 7, 8		
			1.2		49				
t _{PLZ} ,	Output Disable Time	$C_L = 30 \text{ pF}, \text{ R}_L = 500 \Omega$	3.3 ± 0.3	0.8	3.7				
t _{PHZ}			2.5 ± 0.2	1.0	4.2		Figures 1, 3, 4		
			1.8 ± 0.15	1.5	7.6	ns	., ., .		
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	15.2		Figures		
			1.2		38		5, 7, 8		
t _{OSHL}	Output to Output Skew	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3		0.5				
t _{OSLH}	(Note 7)		2.5 ± 0.2		0.5				
			1.8 ± 0.15		0.75	ns			
		$C_L = 15 \text{ pF}, \text{ R}_L = 2k\Omega$	1.5 ± 0.1		1.5				
			1.2		1.5				

Note 6: For C_L = 50 $_{P}\text{F},$ add approximately 300 ps to the AC maximum specification.


Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC}	T _A = +25°C	Units
			(V)	Typical	
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, \text{ V}_{IH} = \text{V}_{CC}, \text{ V}_{IL} = 0\text{V}$	1.8	0.25	
			2.5	0.6	V
			3.3	0.8	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.25	
			2.5	-0.6	V
			3.3	-0.8	
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	


Capacitance

Symbol	Parameter	Conditions	$T_A = +25^{\circ}C$ Typical	Units
CIN	Input Capacitance	V_{CC} = 1.8, 2.5V or 3.3V, V_I = 0V or V_{CC}	6	pF
C _{OUT}	Output Capacitance	$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	7	pF
C _{PD}	Power Dissipation Capacitance	$V_I = 0V \text{ or } V_{CC}, f = 10 \text{ MHz},$	20	pF
		V _{CC} = 1.8V, 2.5V or 3.3V		

7

