

Input Loading/Fan-Out			
Pin Names	Description	HIGH/LOW	
		U.L. HIGH/LOW	$\begin{gathered} \text { Input } \mathrm{I}_{\mathrm{HH}} / \mathrm{I}_{\mathrm{LL}} \\ \text { Output } \mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}} \end{gathered}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Data Inputs/	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
	Data Outputs	150/40	$-3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{7}$	Data Inputs/	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
	Data Outputs	600/106.6	-12 mA/64 mA
APAR	A Bus Parity	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
	Input/Output	150/40	$-3 \mathrm{~mA} / 24 \mathrm{~mA}$
BPAR	B Bus Parity	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
	Input/Output	600/106.6	$-12 \mathrm{~mA} / 64 \mathrm{~mA}$
ODD/EVEN	Parity Select Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{GBA}}, \overline{\mathrm{GAB}}$	Output Enable Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{SEL}}$	Mode Select Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
LEA, LEB	Latch Enable Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { ERRA, }}$ ERRB	Error Signal Outputs	50/33.3	-1 mA/20 mA

Pin Descriptions

Pin Names	Description
$A_{0}-A_{7}$	A Bus Data Inputs/Data Outputs
$B_{0}-B_{7}$	B Bus Data Inputs/Data Outputs
APAR, BPAR	A and B Bus Parity Inputs
ODD/EVEN	ODD/EVEN Parity Select, Active LOW for EVEN Parity
$\overline{\mathrm{GBA}}, \overline{\mathrm{GAB}}$	Output Enables for A or B Bus, Active LOW
$\overline{\mathrm{SEL}}$	Select Pin for Feed-Through or Generate Mode, LOW for Generate Mode
LEA, LEB	Latch Enables for A and B Latches, HIGH for Transparent Mode
$\overline{\mathrm{ERRA}}, \overline{\mathrm{ERRB}}$	Error Signals for Checking Generated Parity with Parity In, LOW if Error Occurs

Functional Description

The 74F899 has three principal modes of operation which are outlined below. These modes apply to both the A-to-B and B-to-A directions.

- Bus $A(B)$ communicates to Bus $B(A)$, parity is generated and passed on to the $B(A)$ Bus as BPAR (APAR). If LEB (LEA) is HIGH and the Mode Select ($\overline{\mathrm{SEL}}$) is LOW, the parity generated from $B[0: 7]$ ($A[0: 7]$) can be checked and monitored by ERRB (ERRA).
- Bus $A(B)$ communicates to Bus $B(A)$ in a feed-through mode if $\overline{\text { SEL }}$ is HIGH. Parity is still generated and checked as $\overline{E R R A}$ and $\overline{E R R B}$ in the feed-through mode (can be used as an interrupt to signal a data/parity bit error to the CPU).
- Independent Latch Enables (LEA and LEB) allow other permutations of generating/checking (see Function Table).

Function Table

Inputs					Operation
GAB	GBA	$\overline{\text { SEL }}$	LEA	LEB	
H	H	X	X	X	Busses A and B are 3-STATE.
H	L	L	L	H	Generates parity from $\mathrm{B}[0: 7]$ based on $\mathrm{O} / \overline{\mathrm{E}}$ (Note 1). Generated parity \rightarrow APAR. Generated parity checked against BPAR and output as ERRB.
H	L	L	H	H	Generates parity from $\mathrm{B}[0: 7]$ based on $\mathrm{O} / \overline{\mathrm{E}}$. Generated parity \rightarrow APAR. Generated parity checked against BPAR and output as ERRB. Generated parity also fed back through the A latch for generate/check as ERRA.
H	L	L	X	L	Generates parity from B latch data based on O / \bar{E}. Generated parity \rightarrow APAR. Generated parity checked against latched BPAR and output as $\overrightarrow{\text { ERRB }}$.
H	L	H	X	H	BPAR/B[0:7] \rightarrow APAR/A0:7] Feed-through mode. Generated parity checked against BPAR and output as ERRB.
H	L	H	H	H	$\text { BPAR/B[0:7] } \rightarrow \text { APAR/A[0:7] }$ Feed-through mode. Generated parity checked against BPAR and output as $\overline{\mathrm{ERRB}}$. Generated parity also fed back through the A latch for generate/check as ERRA.
L	H	L	H	L	Generates parity for $A[0: 7]$ based on O / \bar{E}. Generated parity $\rightarrow B P A R$. Generated parity checked against APAR and output as ERRA.
L	H	L	H	H	Generates parity from $A[0: 7]$ based on O / \bar{E}. Generated parity \rightarrow BPAR. Generated parity checked against APAR and output as ERRA. Generated parity also fed back through the B latch for generate/check as ERRB.
L	H	L	L	X	Generates parity from A latch data based on $\mathrm{O} / \overline{\mathrm{E}}$. Generated parity \rightarrow BPAR. Generated parity checked against latched APAR and output as ERRA.
L	H	H	H	L	APAR/A[0:7] \rightarrow BPAR/B[0:7] Feed-through mode. Generated parity checked against APAR and output as ERRA.
L	H	H	H	H	$\text { APAR/A[0:7] } \rightarrow \text { BPAR/B[0:7] }$ Feed-through mode. Generated parity checked against APAR and output as ERRA. Generated parity also fed back through the B latch for generate/check as ERRB.
H = HIGH Voltage Level L = LOW Voltage Level \quad X = Immaterial					Voltage Level $\quad \mathrm{X}=$ Immaterial

Functional Block Diagram

Absolute Maximum Ratings(Note 2)	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 3)	-0.5 V to +7.0 V
Input Current (Note 3)	-30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output 3-STATE Output
Current Applied to Output

$$
\text { in LOW State (Max) } \quad \text { Twice the Rated } \mathrm{I}_{\mathrm{OL}}(\mathrm{~mA})
$$

ESD Last Passing Voltage (Min)
-0.5 V to V_{CC} -0.5 V to +5.5 V

4000V

Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied

Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.7 \end{aligned}$			V		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~B}_{\mathrm{n}}, \mathrm{BPAR}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$ $10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & \hline 0.5 \\ & 0.55 \\ & 0.55 \end{aligned}$	V		$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$ ($\mathrm{A}_{\mathrm{n}}, \mathrm{APAR}, \overline{\mathrm{ERRA}}, \overline{\mathrm{ERRB}}$) $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$ (A ${ }_{n}$, APAR, $\left.\overline{\text { ERRA }}, \overline{E R R B}\right)$ $\mathrm{l}_{\mathrm{LL}}=64 \mathrm{~mA}\left(\mathrm{~B}_{\mathrm{n}}\right.$, BPAR $)$
$\mathrm{V}_{\text {TH }}$	Input Threshold Voltage		1.45		V		$\pm 0.1 \mathrm{~V}$, Sweep Edge Rate must be > 1V/50 ns
$\mathrm{V}_{\text {OLV }}$	Negative Ground Bounce Voltage		1.0		V		Observed on "quiet" output during simultaneous switching of remaining outputs
$\mathrm{V}_{\text {OLP }}$	Positive Ground Bounce Voltage		1.0		V		Observed on "quiet" output during simultaneous switching of remaining outputs
ILL	Input Low Current			-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
I_{H}	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V} \\ & (\mathrm{ODD} / \mathrm{EVEN}, \overline{\mathrm{GBA}}, \overline{\mathrm{GAB}}, \overline{\mathrm{SEL}}, \mathrm{LEA}, \mathrm{LEB}) \end{aligned}$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown (I/O)			0.5	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} \\ & \left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}, \mathrm{~A}_{\mathrm{PAR}}, \mathrm{~B}_{\mathrm{PAR}}\right) \end{aligned}$
${ }^{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\mathrm{IOD}}=150 \mathrm{mV}$ All Other Pins Grounded
ILL	Input Low Current			-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{H}+\mathrm{+}} \\ & \mathrm{I}_{\mathrm{OZH}} \end{aligned}$	Output Leakage Current Current			70	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{l/O}}=2.7 \mathrm{~V} \\ & \left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}, \text { APAR, BPAR }\right) \end{aligned}$

A_{n}, APAR $\rightarrow B_{n}$, BPAR
$\left(B_{n}\right.$, BPAR $\rightarrow A_{n}$, APAR $)$
FIGURE 1.

$\mathrm{A}_{\mathrm{n}} \rightarrow$ BPAR
$\left(\mathrm{B}_{\mathrm{n}} \rightarrow\right.$ APAR $)$
FIGURE 2.
$\mathrm{A}_{\mathrm{n}} \rightarrow \overline{\mathrm{ERRA}}$
($\mathrm{B}_{\mathrm{n}} \rightarrow \overline{\mathrm{ERRB}}$)

FIGURE 3.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
