FAIRCHILD

SEMICONDUCTOR

74F545 **Octal Bidirectional Transceiver with 3-STATE Outputs**

General Description

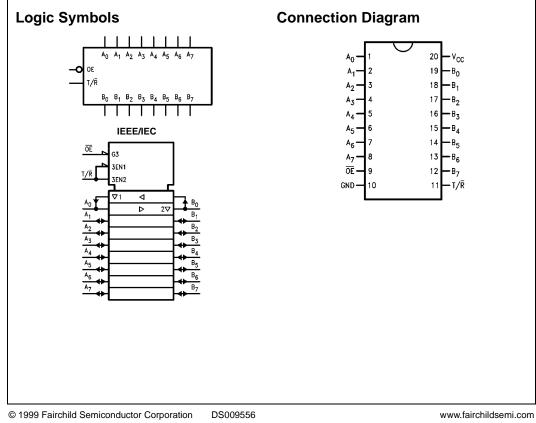
The 74F545 is an 8-bit, 3-STATE, high-speed transceiver. It provides bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 24 mA bus drive capability on the A Ports and 64 mA bus drive capability on the B Ports.

One input, Transmit/Receive (T/\overline{R}) determines the direction of logic signals through the bidirectional transceiver. Transmit enables data from A-to-B Ports; Receive enables data from B-to-A Ports. The Output Enable input disables both A and B Ports by placing them in a 3-STATE condition.

Features

- Higher drive than 8304
- 8-bit bidirectional data flow reduces system package count

April 1988


Revised August 1999

- 3-STATE inputs/outputs for interfacing with bus-oriented systems
- 24 mA and 64 mA bus drive capability on A and B Ports, respectively
- Transmit/Receive and Output Enable simplify control logic
- Guaranteed 4000V minimum ESD protection

Ordering Code:

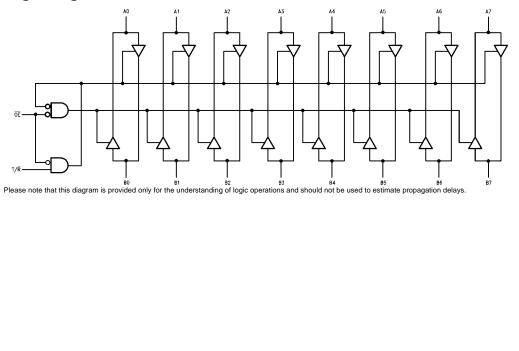
Order Number	der Number Package Number Package Description						
74F545SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide					
74F545PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					
Devises also subjects in Tana and Deal Creative by encoding the suffix latter "V" to the ordering code							

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

74F545

Unit Loading/Fan Out

Dia Managa	Description	U.L.	Input I _{IH} /I _{IL}				
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}				
OE	Output Enable Input (Active LOW)	1.0/2.0	20 μA/–1.2 mA				
T/R	Transmit/Receive Input	1.0/2.0	20 μA/–1.2 mA				
A ₀ -A ₇	Side A 3-STATE Inputs or	3.5/1.083	70 μA/–650 μA				
	3-STATE Outputs	150/40 (33.3)	–3 mA/24 mA (20 mA)				
B ₀ -B ₇	Side B 3-STATE Inputs or	3.5/1.083	70 μA/–650 μA				
	3-STATE Outputs	600/106.6 (80)	–12 mA/64 mA (48 mA)				


Truth Table

Inp	uts	Outputs
OE	T/R	
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	High Z

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Z = High Impedance

Logic Diagram

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

	•
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	-55°C to +150C
V_{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage 74F545

 $0^{\circ}C$ to $+70^{\circ}C$

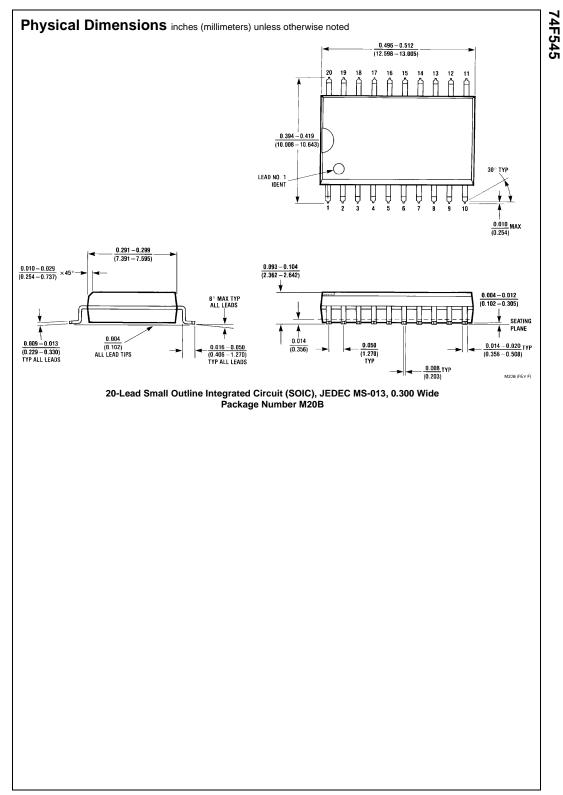
+4.5V to +5.5V

ote 1: Absolute maximum ratings are values beyond which the devi

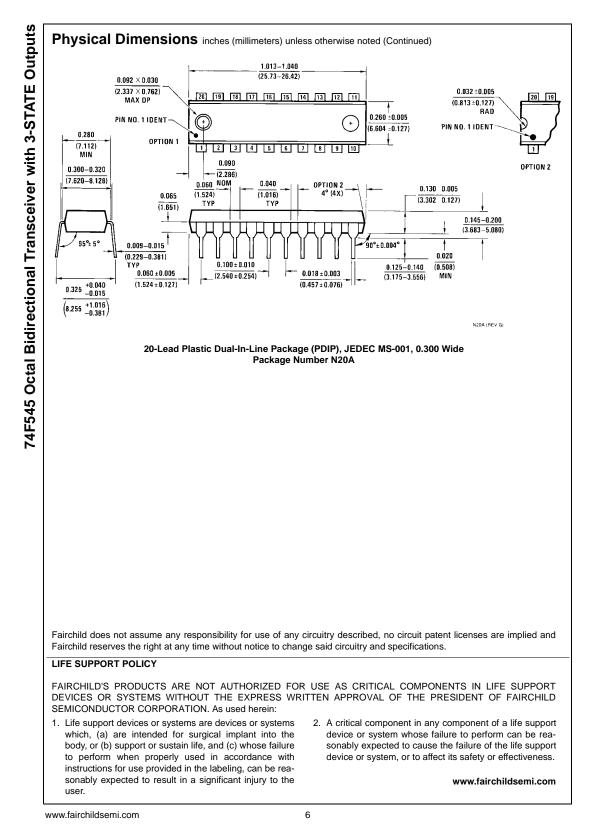
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions	
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA} (\overline{OE}, T/\overline{R})$	
V _{OH}	Output HIGH	10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA} (A_n)$	
	Voltage	10% V _{CC}	2.4					$I_{OH} = -3 \text{ mA} (A_n)$	
		10% V _{CC}	2.0			V	Min	$I_{OH} = -15 \text{ mA} (B_n)$	
		5% V_{CC}	2.7					$I_{OH} = -1 \text{ mA} (A_n)$	
		5% V_{CC}	2.7					$I_{OH} = -3 \text{ mA} (A_n)$	
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA (A _n)	
	Voltage	10% V _{CC}			0.55	v	IVIIII	I _{OL} = 64 mA (B _n)	
IIH	Input HIGH				5.0	μA	Max	$V_{IN} = 2.7V (\overline{OE}, T/\overline{R})$	
	Current							TIN 2.14 (OE, 1/14)	
I _{BVI}	Input HIGH Current				7.0	μA	Max	$V_{IN} = 7.0V (\overline{OE}, T/\overline{R})$	
	Breakdown Test				7.0	μι	Max	VIN - 7.00 (OE, 1710)	
I _{BVIT}	Input HIGH Current	•			0.5	mA	Max	$V_{IN} = 5.5V (A_n, B_n)$	
	Breakdown (I/O)				0.0	110 (Max	$v_{\rm IN} = 0.0 v_{\rm (} v_{\rm n}, D_{\rm n})$	
I _{CEX}	Output HIGH				50	μA	Max	$V_{OUT} = V_{CC}$	
	Leakage Current					μι	max		
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA	
	Test					-		All Other Pins Grounded	
l _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$	
	Circuit Current				0.70	μι	0.0	All Other Pins Grounded	
IIL	Input LOW Current				-1.2	mA	Max	$V_{IN} = 0.5V \ (\overline{OE}, \ T/R)$	
I _{IH} + I _{OZH}	Output Leakage Current				70	μΑ	Max	$V_{OUT} = 2.7V (A_n, B_n)$	
I _{IL} + I _{OZL}	Output Leakage Current				-650	μΑ	Max	$V_{OUT} = 0.5V (A_n, B_n)$	
l _{os}	Output Short-Circuit Curren	nt	-60		-150	mA	Max	$V_{OUT} = 0V (A_n)$	
			-100		-225	110 (Max	$V_{OUT} = 0V (B_n)$	
I _{zz}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V$	
I _{ССН}	Power Supply Current			70	90	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			95	120	mA	Max	$V_0 = LOW$	
I _{CCZ}	Power Supply Current			85	110	mA	Max	V _O = HIGH Z	

74F545


AC Electrical Characteristics

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	2.5	4.2	6.0	2.0	7.5	2.5	7.0	ns
t _{PHL}	A _n to B _n or B _n to A _n	2.5	4.6	6.0	2.0	7.5	2.5	7.0	
t _{PZH}	Output Enable Time	3.0	5.3	7.0	2.5	9.0	3.0	8.0	
t _{PZL}		3.5	6.0	8.0	3.0	10.0	3.5	9.0	
t _{PHZ}	Output Disable Time	3.0	5.0	6.5	2.5	9.0	3.0	7.5	ns
t _{PLZ}		2.0	5.0	6.5	2.0	10.0	2.0	7.5	

www.fairchildsemi.com

5

