

Pin Descriptions						Functional Description
Pin Names		Description				The ACT899 has three principal modes of operation which are outlined below. These modes apply to both the A-to-B and B-to-A directions.
$\mathrm{A}_{0}-\mathrm{A}_{7}$ $\mathrm{B}_{0}-\mathrm{B}_{7}$ APAR, ODD/EV $\overline{\mathrm{GBA}}, \overline{\mathrm{G}}$ $\overline{\mathrm{SEL}}$ LEA, LE ERRA,	BPAR VEN $\overline{A B}$ B ERRB	A Bu B Bu A and ODD Active Outp Active Sele Mod Latch HIGH Error Parity	s Data s Data d B Bu /EVEN LOW ut Ena LOW Pin f , LOW Enab for Tr Signa y with	Input Input s Parit Parity for E bles fo V or Fee for les for anspa Is for Parity	s/Data Outputs s/Data Outputs ity Inputs y Select, VEN Parity or A or B Bus, d-Through or Generate Generate Mode A and B Latches, arent Mode Checking Generated In, LOW if Error Occurs	- Bus $A(B)$ communicates to Bus $B(A)$ in a feed-through mode if $\overline{\text { SEL }}$ is HIGH. Parity is still generated and checked as ERRA and ERRB in the feed-through mode (can be used as an interrupt to signal a data/parity bit error to the CPU). - Independent Latch Enables (LEA and LEB) allow other permutations of generating/checking (see Function Table).
Function Table						
Inputs					Operation	
GAB	GBA	SEL	LEA	LEB		
H	H	X	X	X	Busses A and B are 3-STATE.	
H	L	L	L	H	Generates parity from $\mathrm{B}[0: 7]$ based on $\mathrm{O} / \overline{\mathrm{E}}$ (Note 1). Generated parity \rightarrow APAR. Generated parity checked against BPAR and output as ERRB.	
H	L	L	H	H	Generates parity from $B[0: 7]$ based on O / \bar{E}. Generated parity \rightarrow APAR. Generated parity checked against BPAR and output as ERRB. Generated parity also fed back through the A latch for generate/check as ERRA.	
H	L	L	X	L	Generates parity from B latch data based on $\mathrm{O} / \overline{\mathrm{E}}$. Generated parity \rightarrow APAR. Generated parity checked against latched BPAR and output as ERRB.	
H	L	H	X	H	BPAR/B[0:7] \rightarrow APAR/A0:7] Feed-through mode. Generated parity checked against BPAR and output as ERRB.	
H	L	H	H	H	$\text { BPAR/B[0:7] } \rightarrow \text { APAR/A[0:7] }$ Feed-through mode. Generated parity checked against BPAR and output as $\overline{E R R B}$. Generated parity also fed back through the A latch for generate/check as ERRA.	
L	H	L	H	L	Generates parity for A[0:7] based on O/E. Generated parity \rightarrow BPAR. Generated parity checked against APAR and output as ERRA.	
L	H	L	H	H	Generates parity from $A[0: 7]$ based on O / \bar{E}. Generated parity \rightarrow BPAR. Generated parity checked against APAR and output as ERRA. Generated parity also fed back through the B latch for generate/check as ERRB.	
L	H	L	L	X	Generates parity from A latch data based on O/E. Generated parity \rightarrow BPAR. Generated parity checked against latched APAR and output as ERRA.	
L	H	H	H	L	$\text { APAR/A[0:7] } \rightarrow \text { BPAR/B[0:7] }$ Feed-through mode. Generated parity checked against APAR and output as ERRA.	
L	H	H	H	H	$\text { APAR/A[0:7] } \rightarrow \text { BPAR/I }$ Feed-through mode. G Generated parity also	0:7] nerated parity checked against APAR and output as ERRA. back through the B latch for generate/check as ERRB.
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level L = LOW Voltage Level X = Immaterial Note 1: $O / \bar{E}=$ ODD/EVEN						

Functional Block Diagram

AC Path

Absolute Maximum Ratings(Note 2)
Supply Voltage (V_{CC}) DC Input Diode Current (I_{K})

$$
\begin{aligned}
& \mathrm{V}_{1}=-0.5 \mathrm{~V} \\
& \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}
\end{aligned}
$$

DC Input Voltage (V_{I})
DC Output Diode Current (IoK)

$$
\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}
$$

DC Output Voltage (V_{O})
or Sink Current (l_{O})

-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}
$$

DC Output Source
DC VCC or Ground Current per Output Pin (I I_{Cc} or $\mathrm{I}_{\mathrm{GND}}$)
-20 mA
+20 mA
$+20 \mathrm{~mA}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm 50 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Sink Current	$\pm 300 \mathrm{~mA}$
Junction Temperature (T,)	$140^{\circ} \mathrm{C}$

Junction Temperature (T_{J}) $140^{\circ} \mathrm{C}$

Recommended Operating Conditions

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OH}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note 3) } \end{aligned}$
V_{OL}	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 3) \end{aligned}$
I_{IN}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\overline{\mathrm{I}} \mathrm{OZ}$	Maximum 3-STATE Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{I}=V_{I L}, V_{I H} \\ & V_{O}=V_{C C}, G N D \end{aligned}$
$\overline{I_{C C T}}$	Maximum $\mathrm{ICC}^{\text {/Input }}$	5.5	0.6		1.5	mA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
IOLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$	Output Current (Note 4)	5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
I_{CC}	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND
Note 3: Maximum of 9 outputs loaded; thresholds on input associated with output under test. Note 4: Maximum test duration 2.0 ms , one output loaded at a time.							

www.fairchildsemi.com

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Fairchild does not assume ary responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at ary time without notice to change said circuitry and spedifications.

