

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OEAB}}_{n}$	A-to-B Output Enable Input (Active LOW)
$\overline{\mathrm{OEBA}}_{n}$	B-to-A Output Enable Input (Active LOW)
$\overline{\mathrm{CEAB}}_{n}$	A-to-B Enable Input (Active LOW)
$\overline{\mathrm{CEBA}}_{n}$	B-to-A Enable Input (Active LOW)
$\overline{\mathrm{LEAB}}_{n}$	A-to-B Latch Enable Input (Active LOW)
$\overline{\mathrm{LEBA}}_{n}$	B-to-A Latch Enable Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{15}$	A-to-B Data Inputs or B-to-A 3-STATE Outputs
$\mathrm{B}_{0}-\mathrm{B}_{15}$	B-to-A Data Inputs or A-to-B 3-STATE Outputs

Data I/O Control Table

Inputs			Latch Status	Output Buffers
$\overline{\mathrm{CEAB}}_{\mathbf{n}}$	$\overline{\mathrm{LEAB}}_{\mathbf{n}}$	$\overline{\mathrm{OEAB}}_{\mathbf{n}}$	(Byte \mathbf{n})	(Byte n)
H	X	X	Latched	High Z
X	H	X	Latched	-
L	L	X	Transparent	-
X	X	H	-	High Z
L	X	L	-	Driving

H = HIGH Voltage Leve
L = LOW Voltage Level
$X=$ Immaterial
A-to-B data flow shown; B-to-A flow control is the same, except using $\overline{\mathrm{CEBA}}_{n}, \overline{\mathrm{LEBA}}_{n}$ and $\overline{\mathrm{OEBA}}_{n}$

Functional Description

The LCX16543 contains sixteen non-inverting transceivers with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins may be shorted together to obtain full 16 -bit operation. The following description applies to each byte. For data flow from A to B , for example, the A-to-B Enable ($\overline{\mathrm{CEAB}}_{\mathrm{n}}$) input must be LOW in order to enter data from $A_{0}-A_{15}$ or take data from $B_{0}-B_{15}$, as indicated in the Data I/O Control Table. With $\overline{\mathrm{CEAB}}_{\mathrm{n}}$ LOW, a LOW signal on the A-to-B Latch Enable ($\left.\overline{\mathrm{LEAB}}_{\mathrm{n}}\right)$ input
makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the $\overline{\mathrm{LEAB}}_{n}$ signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With $\overline{\mathrm{CEAB}}_{\mathrm{n}}$ and $\overline{\mathrm{OEAB}}_{\mathrm{n}}$ both LOW, the 3-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{C E B A}_{n}, \overline{L E B A}_{n}$ and $\overline{\mathrm{OEBA}}_{n}$ inputs.

Absolute Maximum Ratings(Note 2)					
Symbol	Parameter	Value	Conditions	Units	
V_{CC}	Supply Voltage	-0.5 to +7.0		V	
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0		V	
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to +7.0			
		Output in 3-STATE Output in HIGH or LOW State (Note 3)	V		
I_{K}	DC Input Diode Current	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	mA		
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{1}<\mathrm{GND}$	mA	
		-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$		
I_{O}	DC Output Source/Sink Current	+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	m	
I_{CC}	DC Supply Current per Supply Pin	± 100		mA	
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Ground Pin	± 100		mA	
$\mathrm{~T}_{\text {STG }}$	Storage Temperature	-65 to +150		mA	

Recommended Operating Conditions (Note 4)

Symbol	Parameter		Min	Max	Units
V_{CC}	Supply Voltage	Operating Data Retention	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage		0	5.5	V
V_{O}	Output Voltage	HIGH or LOW State 3-STATE	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
$\mathrm{IOH} / \mathrm{l}_{\mathrm{OL}}$	Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 24 \\ \pm 12 \\ \pm 8 \end{gathered}$	mA
T_{A}	Free-Air Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recom mended Operating Conditions" table will define the conditions for actual device operation
Note 3: I_{O} Absolute Maximum Rating must be observed.
Note 4: Unused (inputs or I/Os) must be held HIGH or LOW. They may not float.
DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
V_{IH}	HIGH Level Input Voltage		2.3-2.7	1.7		V
			2.7-3.6	2.0		
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		2.3-2.7		0.7	V
			2.7-3.6		0.8	
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.3	1.8		
		$\mathrm{IOH}^{\text {a }}$ - 12 mA	2.7	2.2		
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		
$\overline{\mathrm{V}}$	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3-3.6		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$	2.3		0.6	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	
1	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
I_{OZ}	3-STATE I/O Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$

DC Electrical Characteristics (Continued)						
Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
${ }^{\text {cc }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.3-3.6		20	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$ (Note 5)	2.3-3.6		± 20	
$\Delta \mathrm{l}$ cc	Increase in $\mathrm{I}_{\text {CC }}$ per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.3-3.6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.2 \end{aligned}$	ns
$\begin{array}{r} \mathrm{t}_{\mathrm{PHL}} \\ \mathrm{t}_{\mathrm{PLH}} \\ \hline \end{array}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{L E B A}_{n} \text { to } A_{n} \text { or } \overline{L E A B}_{n} \text { to } B_{n} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 7.8 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	$\begin{aligned} & \text { Output Enable Time } \\ & \overline{O E B A}_{n} \text { or } \overline{O E A B}_{n} \text { to } A_{n} \text { or } B_{n} \\ & \overline{C E B A}_{n} \text { or } \overline{C E A B}_{n} \text { to } A_{n} \text { or } B_{n} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	$\begin{aligned} & \text { Output Disable Time } \\ & \overline{\mathrm{OEBA}}_{n} \text { or } \overline{\mathrm{OEAB}}_{n} \text { to } A_{n} \text { or } B_{n} \\ & \overline{\mathrm{CEBA}}_{n} \text { or } \overline{\mathrm{CEAB}}_{n} \text { to } A_{n} \text { or } B_{n} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 7.8 \end{aligned}$	ns
t_{S}	Setup Time, HIGH or LOW, Data to $\overline{\mathrm{LEXX}}_{\mathrm{n}}$	2.5		2.5		3.0		ns
t_{H}	Hold Time, HIGH or LOW, Data to $\overline{\mathrm{LEXX}}_{\mathrm{n}}$	1.5		1.5		2.0		ns
t_{W}	Pulse Width, Latch Enable, LOW	3.0		3.0		3.5		ns
toshl tosth	Output to Output Skew (Note 6)		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$					ns

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Typical	
$\overline{\mathrm{V} \text { OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline-0.8 \\ & -0.6 \end{aligned}$	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{/ \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

FIGURE 1. AC Test Circuit (C_{L} includes probe and jig capacitance)

Test	Switch
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}} \times 2 \mathrm{at} \mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and $t_{\text {rec }}$ Waveforms

3-STATE Output Low Enable and Disable Times for Logic

FIGURE 2. Waveforms
(Input Characteristics; $\mathbf{f = 1 M H z ,} \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{3 n s}$)

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 7 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

