

74ALVT16543
 2.5 V/3.3 V ALVT 16-bit registered transceiver (3-State)

Product data sheet
Supersedes data of 1998 Feb 13

FEATURES

- 16-bit universal bus interface
- 5 V I/O Compatible
- 3-State buffers
- Output capability: $+64 \mathrm{~mA} /-32 \mathrm{~mA}$
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power-up 3-State
- Power-up reset
- No bus current loading when output is tied to 5 V bus
- Latch-up protection exceeds 500 mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

DESCRIPTION

The 74ALVT16543 is a high-performance BiCMOS product designed for V_{CC} operation at 2.5 V or 3.3 V with I / O compatibility up to 5 V . The device can be used as two 8 -bit transceivers or one 16-bit transceiver.
The 74ALVT16543 contains two sets of eight D-type latches, with separate control pins for each set. Using data flow from A to B as an example, when the A-to-B Enable (nEAB) input and the A-to-B Latch Enable (n LEAB) input are LOW, the A-to-B path is transparent.
A subsequent LOW-to-HIGH transition of the nLEAB signal puts the A data into the latches where it is stored and the B outputs no longer change with the A inputs. With $n E A B$ and nOEAB both LOW, the 3 -State B output buffers are active and display the data present at the outputs of the A latches.
Control of data flow from B to A is similar, but using the $n E B A$, $n L E B A$, and $n \overline{O E B A}$ inputs.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$	TYPICAL		UNIT
			2.5 V	3.3 V	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay $n A x$ to $n B x$ or $n B x$ to $n A x$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & 1.8 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance DIR, OE	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	3	3	pF
$\mathrm{C}_{1 / \mathrm{O}}$	I/O pin capacitance	Outputs disabled; $\mathrm{V}_{\text {I/O }}=0 \mathrm{~V}$ or V_{CC}	9	9	pF
I CCz	Total supply current	Outputs disabled	40	70	$\mu \mathrm{A}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	TYPE NUMBER	DWG NUMBER
56-Pin Plastic SSOP Type III	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ALVT16543DL}$	SOT371-1
56-Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ALVT16543DGG}$	SOT364-1

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

1LEAB 2	55	
$1 \mathrm{EAB}{ }^{3}$	54	1EBA
GND 4	53	GND
1A0 5	52	180
1A1 6	51	1 B 1
$\mathrm{v}_{\mathrm{CC}} 7$	50	v_{CC}
1A2 8	49	1 B 2
1A3 9	48	1 B 3
1 A 410	47	184
GND 11	46	GND
1 A5 12	45	185
1A6 13	44	186
$1 \mathrm{~A} 7{ }^{14}$	43	$1{ }^{187}$
2 AO 10	42	2 BO
2A1 16	41	2 B 1
2A2 17	40	2 B 2
GND 18	39	GND
2A3 19	38	2 B 3
2A4 20	37	$2 \mathrm{B4}$
2A5 21	36	2 B 5
$\mathrm{v}_{\mathrm{CC}} 22$	35	v_{CC}
$2 \mathrm{A6} 23$	34	$2 \mathrm{B6}$
2A7 24	33	$2 \mathrm{B7}$
GND 25	32	GND
2EAB 26	31	2EBA
2LEAB ${ }^{27}$	30	2LEBA
2OEAB 28	29	2סEBA
SH00037		

LOGIC SYMBOL

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
$\begin{gathered} 5,6,8,9,10,12,13,14 \\ 15,16,17,19,20,21,23,24 \end{gathered}$	$\begin{aligned} & 1 \mathrm{AO}-1 \mathrm{~A} 7, \\ & 2 \mathrm{AO}-2 \mathrm{~A} 7 \end{aligned}$	A Data inputs/outputs
$\begin{aligned} & 52,51,49,48,47,45,44,43 \\ & 42,41,40,38,37,36,34,33 \end{aligned}$	$\begin{aligned} & 1 \mathrm{B0}-1 \mathrm{B7}, \\ & 2 \mathrm{~B} 0-2 \mathrm{~B} 7 \end{aligned}$	B Data inputs/outputs
$\begin{aligned} & 1,56 \\ & 28,29 \end{aligned}$	1OEAB, 1OEBA, 2OEAB, 2OEBA	A to B/B to A Output Enable inputs (active-LOW)
$\begin{array}{r} 3,54 \\ 26,31 \end{array}$	$\begin{aligned} & \text { 1EAB, 1EBA, } \\ & \text { 2EAB, 2EBA } \end{aligned}$	A to B/B to A Enable inputs (active-LOW)
$\begin{aligned} & \hline 2,55 \\ & 27,30 \end{aligned}$	1LEAB, 1LEBA, 2LEAB, 2LEBA	A to B/B to A Latch Enable inputs (active-LOW)
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0 V)
7, 22, 35, 50	V_{CC}	Positive supply voltage

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUTS	STATUS
nOEXX	nEXX	nLEXX	$n A x$ or nBx	nBx or nAx	
H	X	X	X	Z	Disabled
X	H	X	X	Z	Disabled
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\uparrow	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{l} \end{aligned}$	Z	Disabled + Latch
L	L	\uparrow	$\begin{aligned} & \mathrm{h} \\ & \text { । } \end{aligned}$	H L	Latch + Display
$\stackrel{L}{\mathrm{~L}}$	$\stackrel{L}{L}$	$\stackrel{L}{L}$	$\stackrel{H}{\mathrm{H}}$	$\underset{\mathrm{L}}{\mathrm{H}}$	Transparent
L	L	H	X	NC	Hold

[^0]
ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage		-0.5 to +4.6	V
I_{K}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage ${ }^{3}$		-0.5 to +7.0	V
$\mathrm{I}_{\text {OK }}$	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	Output in Off or HIGH state	-0.5 to +7.0	V
$\mathrm{I}_{\text {OUT }}$	DC output current	Output in LOW state	128	mA
	Storage temperature range	Output in HIGH state	-64	

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	2.5 V RANGE LIMITS		3.3 V RANGE LIMITS		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	DC supply voltage	2.3	2.7	3.0	3.6	V
V_{1}	Input voltage	0	5.5	0	5.5	V
V_{IH}	HIGH-level input voltage	1.7		2.0		V
$\mathrm{V}_{\text {IL }}$	Input voltage		0.7		0.8	V
IOH	HIGH-level output current		-8		-32	mA
${ }^{\text {loL }}$	LOW-level output current		8		32	mA
	LOW-level output current; current duty cycle $\leq 50 \%$; f $\geq 1 \mathrm{kHz}$		24		64	
$\Delta t / \Delta v$	Input transition rise or fall rate; Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range	-40	+85	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (3.3 V $\pm 0.3 \mathrm{~V}$ RANGE)

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS			UNIT
				Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
				MIN	TYP ${ }^{1}$	MAX	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$		-	-0.85	-1.2	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V ; $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC}}-0.2$	V_{CC}	-	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		2.0	2.3	-	
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		-	0.07	0.2	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		-	0.25	0.4	
		$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$		-	0.3	0.5	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$		-	0.4	0.55	
$\mathrm{V}_{\text {RST }}$	Power-up output low voltage ${ }^{6}$	$\mathrm{V}_{C C}=3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{C C}$ or GND		-	-	0.55	V
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND	Control pins	-	0.1	± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or 3.6 V ; $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		-	0.1	10	
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$	Data pins ${ }^{4}$	-	0.5	1	
		$\mathrm{V}_{C C}=3.6 \mathrm{~V} ; \mathrm{V}_{1}=0 \mathrm{~V}$		-	0.1	-5	
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		-	0.1	20	
IofF	Off current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; V_{1} or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 4.5 V		-	0.1	± 100	$\mu \mathrm{A}$
Imold	Bus Hold current Data inputs ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$		75	130	-	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$		-75	-140	-	
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$		± 500	-	-	
$l_{\text {EX }}$	Current into an output in the High state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		-	50	125	$\mu \mathrm{A}$
IPU/PD	Power-up/down 3-State output current ${ }^{3}$	$\mathrm{V}_{\mathrm{cc}} \leq 1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{Cc}} ;$ OE/OE = Don't care		-	40	± 100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs HIGH; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}; $\mathrm{l}=0 \mathrm{~mA}$		-	0.07	0.1	mA
$\mathrm{I}_{\text {CCL }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \text {; Outputs LOW; } \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}=0 \mathrm{~mA} \end{aligned}$		-	3.6	5	
I ccz		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs disabled; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}^{5}$		-	0.07	0.1	
$\Delta_{\text {cc }}$	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V ; One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$; Other inputs at V_{CC} or GND		-	0.04	0.4	mA

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.
3. This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to $\mathrm{V} \mathrm{CC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ a transition time of $100 \mu \mathrm{sec}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
4. Unused pins at $V_{C C}$ or GND.
5. $I_{C C Z}$ is measured with outputs pulled up to V_{CC} or pulled down to ground.
6. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.
7. This is the bus hold overdrive current required to force the input to the opposite logic state.

DC ELECTRICAL CHARACTERISTICS (2.5 V ± 0.2 V RANGE)

SYMBOL	PARAMETER	TEST CONDITIONS			IMITS		UNIT
				Temp $=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			
				MIN	TYP ${ }^{1}$	MAX	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$		-	-0.85	-1.2	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 3.6 V ; $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC}}-0.2$	V_{CC}	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$		1.8	2.1	-	
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		-	0.07	0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		-	0.3	0.5	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$; $\mathrm{IOL}=8 \mathrm{~mA}$		-	-	0.4	
$\mathrm{V}_{\text {RST }}$	Power-up output low voltage ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		-	-	0.55	V
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	Control pins	-	0.1	± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or 2.7 V ; $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		-	0.1	10	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$	Data pins ${ }^{4}$	-	0.1	20	
		$\mathrm{V}_{C C}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$		-	0.1	10	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$		-	0.1	-5	
IoFF	Off current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; V_{1} or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 4.5 V		-	0.1	± 100	$\mu \mathrm{A}$
Imold	Bus Hold current Data inputs ${ }^{6}$	$\mathrm{V}_{\text {cC }}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}$		-	120	-	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{1}=1.7 \mathrm{~V}$		-	-6	-	
$\mathrm{l}_{\text {EX }}$	Current into an output in the HIGH state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		-	50	125	$\mu \mathrm{A}$
IPU/PD	Power-up/down 3-State output current ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{OE} / \mathrm{OE}=\mathrm{Don} \text {; care } \end{aligned}$		-	40	100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs HIGH, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}; $\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}$		-	0.04	0.1	mA
$\mathrm{I}_{\text {CCL }}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs LOW, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$		-	2.6	4.5	
ICCz		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs disabled; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}; $\mathrm{I}=0 \mathrm{~mA}^{5}$		-	0.04	0.1	
$\Delta_{\text {l }}$	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V ; One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$; Other inputs at V_{CC} or GND		-	0.01	0.4	mA

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input at the specified voltage level other than $\mathrm{V}_{C C}$ or GND.
3. This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ a transition time of $100 \mu \mathrm{sec}$ is permitted. This parameter is valid for $T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
4. Unused pins at V_{Cc} or GND.
5. $I_{C C Z}$ is measured with outputs pulled up to $V_{C C}$ or pulled down to ground.
6. Not guaranteed.
7. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.

AC CHARACTERISTICS (3.3 V \pm 0.3 V RANGE)

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			
			MIN	TYP ${ }^{1}$	MAX	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay $n A x$ to $n B x$ or $n B x$ to $n A x$	2	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation delay $n L E B A$ to $n A x, n L E A B$ to $n B x$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & t_{\text {tpzL }} \end{aligned}$	Output enable time nOEBA to $n A x, n \overline{O E A B}$ to $n B x$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.1 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{tPHZ}^{\text {tpLZ }} \end{aligned}$	Output disable time nOEBA to $n A x$, nOEAB to $n B x$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.2 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output enable time $n E B A$ to $n A x, n E A B$ to $n B x$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 3.1 \end{aligned}$	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLZ } \end{aligned}$	Output disable time nEBA to $n A x, n E A B$ to $n B x$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.2 \end{aligned}$	ns

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC SETUP REQUIREMENTS ($3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ RANGE)
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	LIMITS		UNIT
			$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		
			MIN	TYP	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time $n A x$ to $n L E A B, n B x$ to $n L E B A$	3	$\begin{aligned} & 0.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 0 \\ -0.4 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time $n A x$ to $n L E A B, n B x$ to $n L E B A$	3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 0.2 \\ -0.3 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time $n A x$ to $n E A B, n B x$ to $n E B A$	3	$\begin{aligned} & 0.5 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \hline-0.3 \\ & -0.6 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time $n A x$ to $n E A B$, nBx to $n E B A$	3	$\begin{aligned} & 1.2 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.1 \end{aligned}$	ns
$\mathrm{tw}_{\text {(}}(\mathrm{L})$	Latch enable pulse width, LOW	3	1.5	-	ns

AC CHARACTERISTICS (2.5 V $\pm \mathbf{0 . 2} \mathrm{V}$ RANGE)

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$			
			MIN	TYP1	MAX	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay $n A x$ to $n B x$ or $n B x$ to $n A x$	2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation delay $n L E B A$ to $n A x$, $n L E A B$ to $n B x$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 5.9 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$	Output enable time nOEBA to $n A x, n \overline{O E A B}$ to $n B x$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.6 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Output disable time nOEBA to $n A x$, nOEAB to $n B x$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 4.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \mathrm{t}_{\mathrm{pzZL}} \end{aligned}$	Output enable time $n E B A$ to $n A x, n E A B$ to $n B x$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \text { tphz } \\ & \mathrm{t}_{\mathrm{tPLZ}} \end{aligned}$	Output disable time $n E B A$ to $n A x, n E A B$ to $n B x$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 3.9 \end{aligned}$	ns

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC SETUP REQUIREMENTS ($2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ RANGE)

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM			UNIT
			$\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		
			MIN	TYP	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time $n A x$ to $n L E A B, n B x$ to $n L E B A$	3	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline-0.2 \\ & -0.5 \end{aligned}$	ns
$\begin{aligned} & \hline t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time $n A x$ to $n L E A B, n B x$ to $n L E B A$	3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 0.2 \\ -0.2 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time $n A x$ to $n E A B$, $n B x$ to $n E B A$	3	$\begin{aligned} & \hline 0.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline-0.3 \\ & -0.6 \end{aligned}$	ns
$\begin{aligned} & \hline t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time $n A x$ to $n E A B, n B x$ to $n E B A$	3	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	$\begin{gathered} 0 \\ 0.2 \end{gathered}$	ns
tw(L)	Latch enable pulse width, LOW	3	1.5	-	ns

2.5 V/3.3 V 16-bit registered transceiver (3-State)

AC WAVEFORMS

For all waveforms $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}} / 2$, whichever is less.

Waveform 1. Propagation Delay For Inverting Output

Waveform 2. Propagation Delay For Non-Inverting Output

Waveform 3. Data Setup and Hold Times and Latch Enable Pulse Width

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$
mm	2.8	0.4	2.35	0.25	0.3	0.22	18.55	7.6	0.635	10.4	1.4	1.0	1.2	0.25	0.18	0.1	0.85

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT371-1		MO-118		\square -	$\begin{aligned} & -9-12-27 \\ & 03-02-18 \end{aligned}$

DIMENSIONS (mm are the original dimensions).

UNIT	\mathbf{A}																	
max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	\mathbf{Z}	θ	
mm	1.2	0.15	1.05	0.25	0.28	0.2	14.1	6.2	0.5	8.3	1	0.8	0.50	0.25	0.08	0.1	0.5	8^{0}
	0.05	0.85	0.2	0.17	0.1	13.9	6.0	0.5	7.9	1	0.4	0.35	0.25	0°				

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT364-1		MO-153			$\begin{aligned} & -9-12-27 \\ & 03-02-19 \end{aligned}$

REVISION HISTORY

Rev	Date	Description
3	20040914	Product data sheet (9397 750 14059). Supersedes data of 1998 Feb 13 (9397 75003568). Modifications: - Ordering information table on page 2: - remove "North America" column; rename third column from "Outside North America" to "Type Number". - DC Electrical Characteristics ($3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ range) table on page 6 : - I on Data pins: add condition ' $\mathrm{V}{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ ' and values $0.1 \mu \mathrm{~A}$ (typ) and $20 \mu \mathrm{~A}$ (max). - AC Characteristics ($3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ range) table on page 8 : - change propagation delay nAx to nBx tpLH Max. time from 2.5 ns to 2.6 ns - change output disable time nOEBA to nAx, nOEAB to nBx tpHz (Max.) time from 4.7 ns to 4.8 ns - change output disable time nOEBA to nAx, nOEAB to nBx tpLz (Max.) time from 4.0 ns to 4.2 ns - change output disable time $n E B A$ to $n A x, n E A B$ to $n B x t_{\text {PHZ }}$ (Max.) time from 4.5 ns to 4.9 ns - change output disable time nEBA to nAx, nEAB to nBx tplz (Max.) time from 3.8 ns to 4.2 ns AC Setup Requirements ($3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ range) table on page 8 : - change setup time $n A x$ to $n L E A B, n B x$ to $n L E B A t_{s}(H)$ (Min.) from 0.0 ns to 0.5 ns ; (Typ.) from -0.8 ns to 0 ns - change setup time $n A x$ to $n\left[E A B, n B x\right.$ to $n L E B A t_{s}(L)$ (Typ.) from -0.3 ns to $-0.4 \mathrm{~ns}$ - change hold time $n A x$ to $n L E A B, n B x$ to $n E E B A t_{h}(H)$ (Typ.) from 0.4 ns to 0.2 ns - change hold time $n A x$ to n LEAB, $n B x$ to $n L E B A t_{h}(L)$ (Typ.) from 0.8 ns to -0.3 ns - change setup time $n A x$ to $n E A B, n B x$ to $n E B A t_{s}(H)$ (Typ.) from -0.8 ns to -0.3 ns - change setup time $n A x$ to $n E A B, n B x$ to $n E B A t_{s}(L)$ (Typ.) from -0.2 ns to -0.6 ns - change hold time $n A x$ to $n E A B$, $n B x$ to $n E B A t_{h}(H)$ (Typ.) from 0.3 ns to 0.6 ns - change hold time $n A x$ to $n E A B$, $n B x$ to $n E B A t_{n}(L)$ (Typ.) from 1.1 ns to 0.1 ns AC Setup Requirements ($2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ range) table on page 9: - change setup time $n A x$ to n LEAB, $n B x$ to $n\left[E B A t_{s}(H)(M i n\right.$.$) from 0 \mathrm{~ns}$ to 0.5 ns ; (Typ.) from -0.9 ns to $-0.2 \mathrm{~ns}$ - change setup time $n A x$ to $n L E A B$, $n B x$ to $n\left[E B A t_{s}(L)\right.$ (Typ.) from 0.2 ns to $-0.5 \mathrm{~ns}$ - change hold time nAx to $n \overline{L E A B}, n B x$ to $n L E B A t_{h}(H)$ (Min.) from 0.8 ns to 1.0 ns ; (Typ.) from -0.2 ns to 0.2 ns - change hold time $n A x$ to $n L E A B, n B x$ to $n L E B A t_{h}(L)$ (Min.) from 1.7 ns to 1.0 ns ; (Typ.) from 1.0 ns to -0.2 ns - change setup time $n A x$ to $n E A B$, $n B x$ to $n E B A t_{s}(H)$ (Min.) from 0 ns to 0.5 ns ; (Typ.) from -1.0 ns to -0.3 ns - change setup time $n A x$ to $n E A B$, $n B x$ to $n E B A t_{s}(L)$ (Typ.) from 0.4 ns to -0.6 ns - change hold time $n A x$ to $n E A B, n B x$ to $n E B A t_{n}(H)(M i n$.$) from 0.5 \mathrm{~ns}$ to 1.2 ns ; (Typ.) from 0.2 ns to 0 ns - change hold time $n A x$ to $n E A B$, $n B x$ to $n E B A t_{n}(L)$ (Min.) from 2.0 ns to 1.5 ns ; (Typ.) from 1.3 ns to 0.2 ns
_2	19980213	Product specification (9397 750 03568). ECN 853-1823 18958 of 13 February 1998. Supersedes data of 1995 Dec 21.
_1	19951221	

Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definitions
I	Objective data sheet	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data sheet	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data sheet	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products-including circuits, standard cells, and/or software-described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit
http://www.semiconductors.philips.com.
© Koninklijke Philips Electronics N.V. 2004
All rights reserved. Published in the U.S.A.
Fax: +31 $4027 \mathbf{2 4 8 2 5}$
Date of release: 09-04
For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.

[^0]: $H=H I G H$ voltage level
 $h=$ HIGH voltage level one setup time prior to the LOW-to-HIGH transition of $n \overline{L E X X}$ or $n \overline{E X X}(X X=A B$ or $B A)$
 $\mathrm{L}=\mathrm{LOW}$ voltage level
 I = LOW voltage level one setup time prior to the LOW-to-HIGH transition of $n \overline{L E X X}$ or $n \overline{E X X}(X X=A B$ or $B A)$
 X = Don't care
 $\uparrow=$ LOW-to-HIGH transition of $n \overline{L E X X}$ or $n \overline{E X X}(X X=A B$ or $B A)$
 $N C=$ No change
 $Z=$ High-impedance or "off" state

