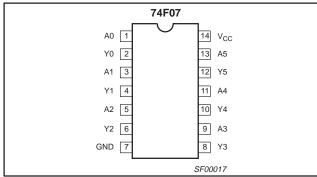
INTEGRATED CIRCUITS

Product data Supersedes data of 1992 Jul 24

2004 Mar 12

Philips Semiconductors

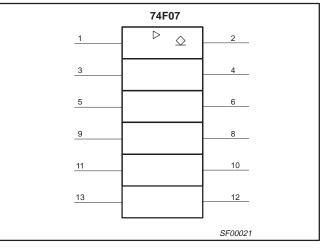

FEATURES

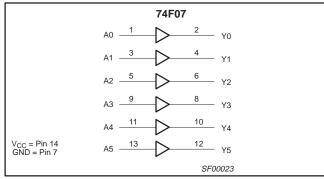
- Open Collector output drive 64mA
- High speed
- 12V output termination voltage

ORDERING INFORMATION

DESCRIPTION	TYPE NUMBER	PKG DWG #
14-pin plastic small outline package	N74F07D	SOT108-1
14-pin plastic dual in-line package	N74F07N	SOT27-1

PIN CONFIGURATIONS


LOGIC SYMBOLS


2004 Mar 12	
Downloaded from Elcodis.com	electronic components distributor

2

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F07	4.5ns	32mA

LOGIC DIAGRAMS

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
An	Data inputs	1.0/1.0	20µA/0.6mA
Yn	Data outputs	OC/106.7	OC/64mA

NOTES:

1. One (1.0) FAST unit load is defined as: 20μ A in the High state and 0.6mA in the Low state.

2. OC = Open Collector

FUNCTION TABLE

INPUTS	OUTPUTS
An	Yn
L	L
Н	Н

NOTES:

2004 Mar 12

1. H = High voltage level

2. L = Low voltage level

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	-30 to +5	mA
V _{OUT}	Voltage applied to output in High output state	-0.5 to 12	V
I _{OUT}	Current applied to output in Low output state	128	mA
T _{amb}	Operating free air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C

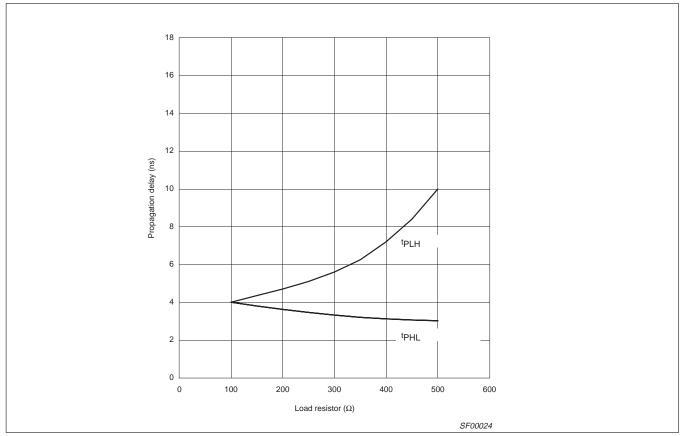
RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		UNIT		
		MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5.0	5.5	V
V _{IH}	High-level input voltage	2.0			V
VIL	Low-level input voltage			0.8	V
I _{lk}	Input clamp current			-18	mA
V _{OH}	High-level output voltage			12	V
I _{OL}	Low-level output current			64	mA
T _{amb}	Operating free air temperature range	0		+70	°C

Product data

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

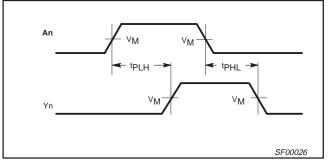

SYMBOL	PARAMETER	PARAMETER			TEST CONDITIONS ¹				UNIT
						MIN	TYP ²	MAX	1
I _{ОН}	High-level output current		$V_{CC} = MIN, V_{IL}$ $V_{OH} = MAX, V_{IH}$	= MAX, I = MIN				250	μΑ
V _{OL}			$V_{CC} = MIN,$ $V_{IL} = MAX,$	I _{OL} = MAX	±10% V _{CC}		0.30	0.50	V
			$V_{IH} = MIN$		$\pm 5\% V_{CC}$		0.30	0.50	V
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$				-0.73	-1.2	V
lı	Input current at maximum voltage	nput	$V_{CC} = MAX, V_{I} =$	= 7.0V				100	μΑ
I _{IH}	High-level input current		$V_{CC} = MAX, V_I = 2.7V$				20	μΑ	
IIL	Low-level input current		$V_{CC} = MAX, V_I = 0.5V$				-0.6	mA	
I _{CC}	Supply current (total)	I _{CCH}	$V_{CC} = MAX$				10	14	mA
		I _{CCL}	1				32	45	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. 2. All typical values are at $V_{CC} = 5V$, $T_{amb} = 25^{\circ}C$. 3. Not more than one output should be shorted at a time. For testing I_{OS} , the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

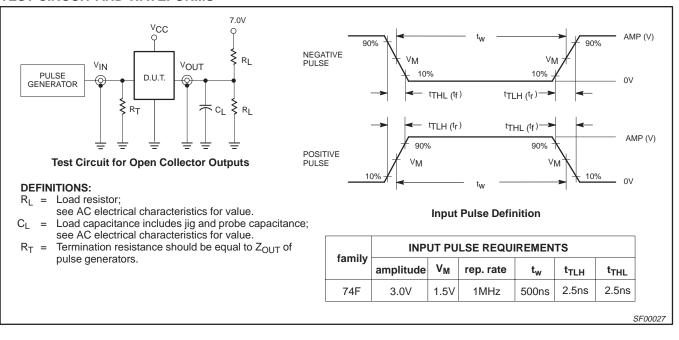
AC ELECTRICAL CHARACTERISTICS

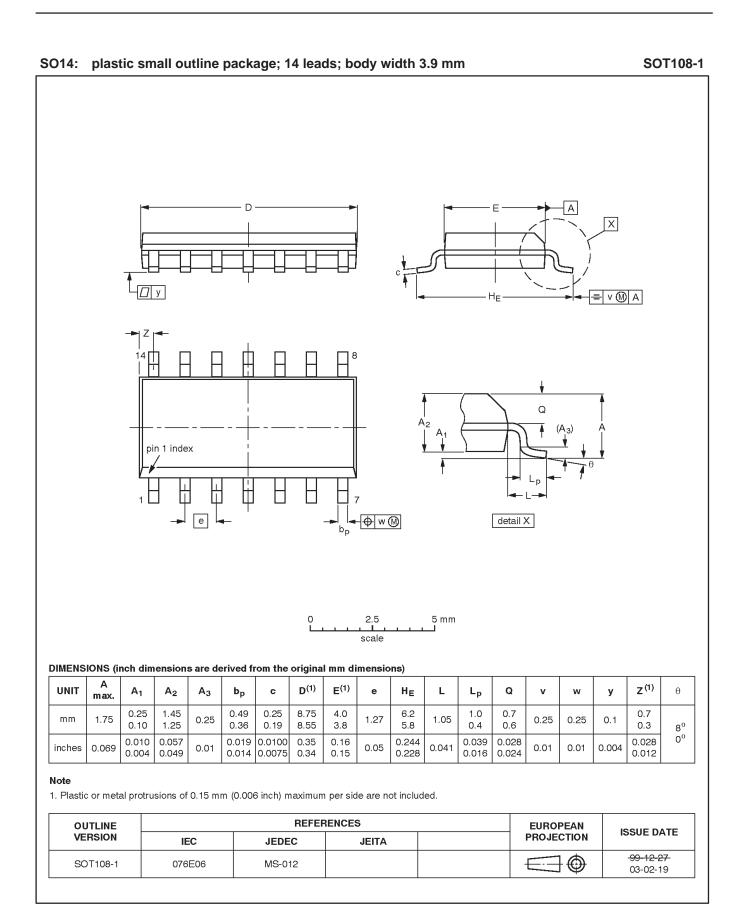
			LIMITS					
SYMBOL	PARAMETER	TEST CONDITION	V _{CC} = +5.0V T _{amb} = +25°C C _L = 50pF, R _L = 100Ω			V _{CC} = +5. T _{amb} = 0°C C _L = 50pF,	UNIT	
			Min	Тур	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation delay An to Yn	Waveform 1	2.0 3.0	4.0 5.0	6.0 7.0	2.0 2.5	6.5 7.5	ns



TYPICAL PROPAGATION DELAYS VERSUS LOAD FOR OPEN COLLECTOR OUTPUTS

NOTE:


When using Open-Collector parts, the value of the pull-up resistor greatly affects the value of the t_{PLH} . For example, changing the specified pull-up resistor value from 500 Ω to 100 Ω will improve the t_{PLH} up to 50% with only a slight increase in the t_{PHL} . However, if the value of the pull-up resistor is changed, the user must make certain that the total I_{OL} current through the resistor and the total I_{IL} 's of the receivers does not exceed the I_{OL} maximum specification.


AC WAVEFORMS

Waveform 1. Propagation delay for non-inverting outputs NOTE: For all waveforms, $V_M = 1.5V$.

TEST CIRCUIT AND WAVEFORMS

seating plane

L

DIP14:

Hex inverter/buffer drivers (open-collector)

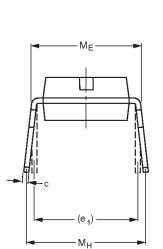
plastic dual in-line package; 14 leads (300 mil)

pin 1 index

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	с	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	М _Н	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.02	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

5

scale


10 mm

-| |- -⊕ w∭ ^b1

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFEF	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EDEC JEITA		PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001	SC-501-14			-99-12-27- 03-02-13	

SOT27-1

REVISION HISTORY

Rev	Date	Description
_3	20040312	Product data (9397 750 13033); supersedes data sheet 74F06_A_7_A_2 of 1992 Jul 24 (9397 750 05054). Modifications:
		 Delete all references to 74F06A and 74F07A (product discontinued).
		 Separate 74F06 and 74F07 into standalone data sheets.
_2	19920724	Product data (9397 750 05054); supersedes previous version.

74F07

Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
111	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax

sales.addresses@www.semiconductors.philips.com

For sales offices addresses send e-mail to:

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2004 All rights reserved. Printed in U.S.A.

Date of release: 03-04

9397 750 13033

Let's make things better.

Document order number:

