74AC245, 74ACT245

Octal Bidirectional Transceiver with 3-STATE Inputs/Outputs

Features

- $I_{C C}$ and $I_{O Z}$ reduced by 50%

■ Non-inverting buffers

- Bidirectional data path

■ A and B outputs source/sink 24 mA

- ACT245 has TTL-compatible inputs

General Description

The AC/ACT245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA at both the A and B ports. The Transmit/Receive (T/信) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (activeLOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition.

Ordering Information

Order Number	Package Number	\quad Package Description
74AC245SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74AC245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC245PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT245SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ACT245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74ACT245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT245PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter " X " to the ordering number.
All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram

Pin Description

Pin Names	Description
$\overline{\mathrm{OE}}$	Output Enable Input
$\mathrm{T} / \overline{\mathrm{R}}$	Transmit/Receive Input
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Side A 3-STATE Inputs or 3-STATE Outputs
$\mathrm{B}_{0}-\mathrm{B}_{7}$	Side B 3-STATE Inputs or 3-STATE Outputs

Logic Symbol

IEEE/IEC

Truth Table

Inputs		Outputs
$\overline{\mathbf{O E}}$	$\mathbf{T} / \overline{\mathbf{R}}$	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	HIGH-Z State

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +7.0 V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current $V_{I}=-0.5 \mathrm{~V}$	-20mA
	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5$	$+20 \mathrm{~mA}$
V_{1}	DC Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\mathrm{IOK}^{\text {I }}$	DC Output Diode Current $\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20mA
	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$+20 \mathrm{~mA}$
V_{O}	DC Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{0}	DC Output Source or Sink Current	$\pm 50 \mathrm{~mA}$
$\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\text {GND }}$	DC $\mathrm{V}_{\text {CC }}$ or Ground Current per Output Pin	$\pm 50 \mathrm{~mA}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	$140^{\circ} \mathrm{C}$

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage AC	2.0 V to 6.0 V
	ACT	4.5 V to 5.5 V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 V to V_{CC}
V_{O}	Output Voltage	0 V to V_{CC}
T_{A}	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Minimum Input Edge Rate, AC Devices: $\mathrm{V}_{\text {IN }}$ from 30\% to 70% of $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}} @ 3.3 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	$125 \mathrm{mV} / \mathrm{ns}$
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Minimum Input Edge Rate, ACT Devices: $V_{\text {IN }}$ from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	$125 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics for AC

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
				Typ.		uaranteed Limits	
V_{IH}	Minimum HIGH Level Input Voltage	3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	2.1	2.1	V
		4.5		2.25	3.15	3.15	
		5.5		2.75	3.85	3.85	
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage	3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	0.9	0.9	V
		4.5		2.25	1.35	1.35	
		5.5		2.75	1.65	1.65	
V_{OH}	Minimum HIGH Level Output Voltage	3.0	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$	2.99	2.9	2.9	V
		4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	5.4	
		3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$		2.56	2.46	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$		3.86	3.76	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\text {IH }}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}^{(1)} \end{aligned}$		4.86	4.76	
V_{OL}	Maximum LOW Level Output Voltage	3.0	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$	0.002	0.1	0.1	V
		4.5		0.001	0.1	0.1	
		5.5		0.001	0.1	0.1	
		3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}^{(1)} \end{aligned}$		0.36	0.44	
$\mathrm{I}_{\text {(}}{ }^{(2)}$	Maximum Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$		± 0.1	± 1.0	$\mu \mathrm{A}$
IOLD	Minimum Dynamic Output Current ${ }^{(3)}$	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max.			75	mA
$\mathrm{I}_{\text {OHD }}$		5.5	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min.			-75	mA
$\mathrm{I}_{\mathrm{CC}}{ }^{(2)}$	Maximum Quiescent Supply Current	5.5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		4.0	40.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Ozt }}$	Maximum I/O Leakage Current	5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, G N D ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, G \mathrm{GND} \end{aligned}$		± 0.3	± 3.0	$\mu \mathrm{A}$

Notes:

1. All outputs loaded; thresholds on input associated with output under test.
2. I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit $@ 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.
3. Maximum test duration 2.0 ms , one output loaded at a time.

DC Electrical Characteristics for ACT

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
				Typ.		uaranteed Limits	
V_{IH}	Minimum HIGH Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	2.0	2.0	V
		5.5		1.5	2.0	2.0	
V_{IL}	Maximum LOW Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	0.8	0.8	V
		5.5		1.5	0.8	0.8	
V_{OH}	Minimum HIGH Level Output Voltage	4.5	$\mathrm{I}_{\text {OUt }}=-50 \mu \mathrm{~A}$	4.49	4.4	4.4	V
		5.5		5.49	5.4	5.4	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$		3.86	3.76	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}^{(4)} \end{aligned}$		4.86	4.76	
V_{OL}	Maximum LOW Level Output Voltage	4.5	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$	0.001	0.1	0.1	V
		5.5		0.001	0.1	0.1	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}^{(4)} \end{aligned}$		0.36	0.44	
I_{IN}	Maximum Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$		± 0.1	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Maximum $\mathrm{ICC}^{\text {/lnput }}$	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$	0.6		1.5	mA
IOLD	Minimum Dynamic Output Current ${ }^{(5)}$	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max.			75	mA
$\mathrm{I}_{\text {OHD }}$		5.5	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min.			-75	mA
I_{CC}	Maximum Quiescent Supply Current	5.5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		4.0	40.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZT }}$	Maximum I/O Leakage Current	5.5	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, G N D ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, G N D \\ & \hline \end{aligned}$		± 0.3	± 3.0	$\mu \mathrm{A}$

Notes:
4. All outputs loaded; thresholds on input associated with output under test.
5. Maximum test duration 2.0 ms , one output loaded at a time.

AC Electrical Characteristics for AC

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})^{(6)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min.	Typ.	Max.	Min.	Max.	
$t_{\text {PLH }}$	Propagation Delay, A_{n} to B_{n} or B_{n} to A_{n}	3.3	1.5	5.0	8.5	1.0	9.0	ns
		5.0	1.5	3.5	6.5	1.0	7.0	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, A_{n} to B_{n} or B_{n} to A_{n}	3.3	1.5	5.0	8.5	1.0	9.0	ns
		5.0	1.5	3.5	6.0	1.0	7.0	
$\mathrm{t}_{\text {PZH }}$	Output Enable Time	3.3	2.5	7.0	11.5	2.0	12.5	ns
		5.0	1.5	5.0	8.5	1.0	9.0	
$\mathrm{t}_{\text {PZL }}$	Output Enable Time	3.3	2.5	7.5	12.0	2.0	13.5	ns
		5.0	1.5	5.5	9.0	1.0	9.5	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	3.3	2.0	6.5	12.0	1.0	12.5	ns
		5.0	1.5	5.5	9.0	1.0	10.0	
$t_{\text {PLZ }}$	Output Disable Time	3.3	2.0	7.0	11.5	1.5	13.0	ns
		5.0	1.5	5.5	9.0	1.0	10.0	

Note:
6. Voltage range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

AC Electrical Characteristics for ACT

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})^{(7)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min.	Typ.	Max.	Min.	Max.	
$t_{\text {PLH }}$	Propagation Delay, A_{n} to B_{n} or B_{n} to A_{n}	5.0	1.5	4.0	7.5	1.5	8.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, A_{n} to B_{n} or B_{n} to A_{n}	5.0	1.5	4.0	8.0	1.0	9.0	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time	5.0	1.5	5.0	10.0	1.5	11.0	ns
$t_{\text {PZL }}$	Output Enable Time	5.0	1.5	5.5	10.0	1.5	12.0	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Output Disable Time	5.0	1.5	5.5	10.0	1.0	11.0	ns
$t_{\text {PLZ }}$	Output Disable Time	5.0	2.0	5.0	10.0	1.5	11.0	ns

Note:
7. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Capacitance

Symbol	Parameter	Conditions	Typ.	Units
$\mathrm{C}_{I N}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ OPEN	4.5	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15.0	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	45.0	pF

Physical Dimensions

LAND PATTERN RECOMMENDATION

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO JEDEC MS-013, VARIATION AC, ISSUE E
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
D) CONFORMS TO ASME Y14.5M-1994
E) LANDPATTERN STANDARD: SOIC127P1030X265-20L
F) DRAWING FILENAME: MKT-M20BREV3

Figure 1. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

LAND PATTERN RECOMMENDATION

M20DREVC

Figure 2. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.

DETAIL A
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

mTC20REVD1

Figure 3. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

Figure 4. 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

LAND PATTERN RECOMMENDATIONS

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-150, VARIATION AE, DATE 1/94.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ASME Y14.5M - 1994.

MSA20REVB

Figure 5. 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	FPS ${ }^{\text {TM }}$	PDP-SPM ${ }^{\text {™ }}$	SyncFET ${ }^{\text {TM }}$
Build it Now ${ }^{\text {TM }}$	FRFET ${ }^{\text {® }}$	Power220 ${ }^{\text {® }}$	$\square_{\text {SYSTEM }}{ }^{\text {® }}$
CorePLUSTM	Global Power Resource ${ }^{\text {SM }}$	Power247 ${ }^{\text {® }}$	The Power Franchise
CROSSVOLT ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$	POWEREDGE ${ }^{\text {® }}$	the wer
CTL ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }} \mathrm{e}$-Series ${ }^{\text {TM }}$	Power-SPM ${ }^{\text {™ }}$	Pranchise
Current Transfer Logic ${ }^{\text {TM }}$	GTOTM	PowerTrench ${ }^{\text {® }}$	TinyBoost ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {® }}$	$i-$ Lot $^{\text {TM }}$	Programmable Active Droop ${ }^{\text {™ }}$	TinyBuck ${ }^{\text {TM }}$
EZSWITCH ${ }^{\text {TM }}$ *	IntelliMAX ${ }^{\text {m }}$	QFET ${ }^{\text {® }}$	TinyLogic ${ }^{\text {® }}$
El ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {TM }}$	QSTM	TINYOPTOTM
	MegaBuck ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
F	MICROCOUPLERTM	Quiet Series ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$
Fairchild ${ }^{\text {® }}$	MicroFET ${ }^{\text {m }}$	RapidConfigure ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Fairchild Semiconductor ${ }^{\circledR}$	MicroPak ${ }^{\text {m }}$	SMART START ${ }^{\text {TM }}$	μ SerDes $^{\text {™ }}$
FACT Quiet Series ${ }^{\text {TM }}$	MillerDrive ${ }^{\text {TM }}$	SPM ${ }^{\text {® }}$	UHC ${ }^{\text {® }}$
$\mathrm{FACT}^{\text {® }}$	Motion-SPM ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	Ultra FRFET ${ }^{\text {TM }}$
FAST ${ }^{\text {® }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperFET ${ }^{\text {TM }}$	UniFET ${ }^{\text {tm }}$
FastvCore ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM-3 }}$	VCX ${ }^{\text {™ }}$
FlashWViter ${ }^{\text {®* }}$	${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-6	
		SuperSOT ${ }^{\text {TM }}$-8	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

