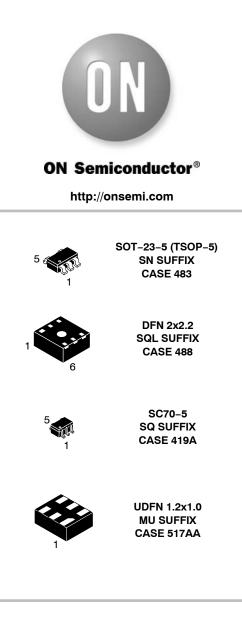
Low Voltage Comparators


The NCS2200 Series is an industry first sub-one volt, low power comparator family. These devices consume only 10 μ A of supply current. They are guaranteed to operate at a low voltage of 0.85 V which allows them to be used in systems that require less than 1.0 V and are fully operational up to 6.0 V which makes them convenient for use in both 3.0 V and 5.0 V systems. Additional features include no output phase inversion with overdriven inputs, internal hysteresis, which allows for clean output switching, and rail-to-rail input and output performance. The NCS2200 Series is available in the tiny SOT-23-5 package. There are four options featuring two industry standard pinouts. Additionally, the NCS2200 and NCS2202 are available in the SC70-5 package. The NCS2200A is available in UDFN 1.2x1.0 package. (Table 1)

Features

- Operating Voltage of 0.85 V to 6.0 V
- Rail-to-Rail Input/Output Performance
- Low Supply Current of 10 μA
- No Phase Inversion with Overdriven Input Signals
- Glitchless Transitioning in or out of Tri-State Mode
- Complementary or Open Drain Output Configuration
- Internal Hysteresis
- Propagation Delay of 1.1 µs
- Pb–Free Packages are Available

Typical Applications

- Single Cell NiCd/NiMH Battery Powered Applications
- Cellular Telephones
- Alarm and Security Systems
- Personal Digital Assistants

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 13 of this data sheet.

Table 1. Comparator Selector Guide

Output Type	Device	Package	Pinout Style
Complementary	NCS2200SN1T1	SOT-23-5	1
Complementary	NCS2200SN2T1	SOT-23-5	2
Complementary	NCS2200SQ2T2	SC70-5	2
Open Drain	NCS2202SN1T1	SOT-23-5	1
Open Drain	NCS2202SQ1T2	SC70-5	1
Open Drain	NCS2202SN2T1	SOT-23-5	2
Open Drain	NCS2202SQ2T2	SC70-5	2
Complementary	NCS2200SQLT1	DFN, 2x2.2	N/A
Complementary	NCS2200AMUT1	UDFN, 1.2x1.0	N/A

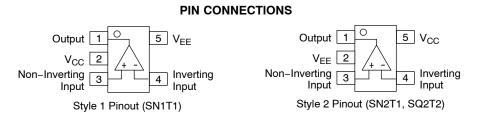
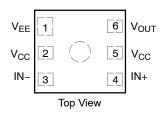
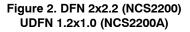




Figure 1. SOT-23-5 (NCS2200, NCS2202), SC70-5 (NCS2200, NCS2202)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage Range (V_{CC} to V_{EE})	V _S	6.0	V
Non-inverting/Inverting Input to V _{EE}	-	-0.2 to (V _{CC} + 0.2)	V
Operating Junction Temperature	TJ	150	°C
Operating Ambient Temperature	T _A	-40 to +105	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Output Short Circuit Duration Time (Note 1)	t _S	Indefinite	S
ESD Tolerance (Note 2) NCS2200 Human Body Model Machine Model NCS2202 Human Body Model Machine Model NCS2200A Human Body Model Machine Model	-	2000 200 1000 200 1900 200	V
Thermal Resistance, Junction-to-Ambient TSOP-5 DFN (Note 3) SC70-5 UDFN	R _{0JA}	238 215 283 350	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

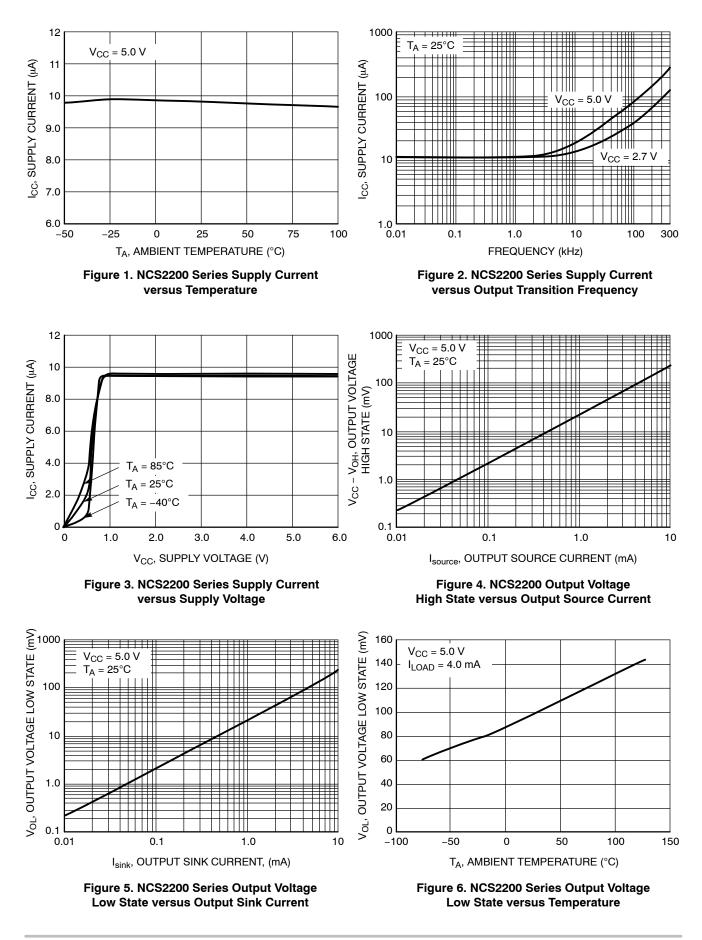
1. The maximum package power dissipation limit must not be exceeded.

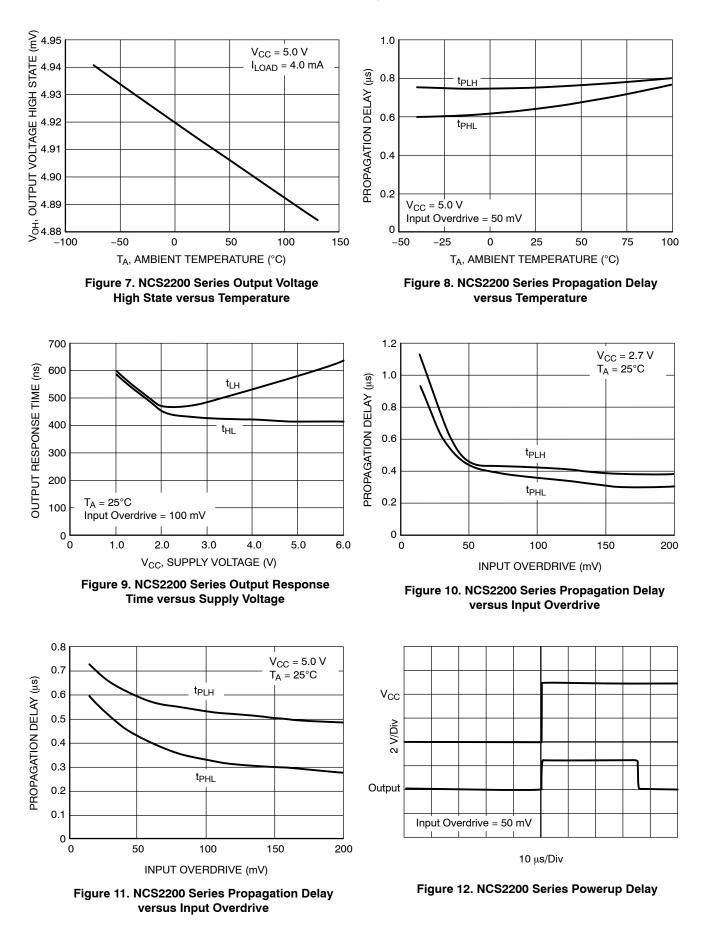
$$P_{D} = \frac{T_{J(max)} - T_{A}}{R_{\theta, JA}}$$

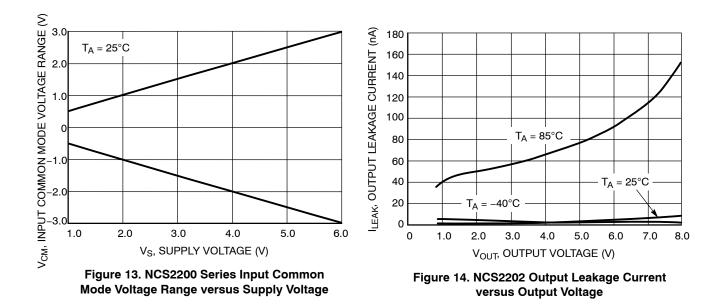
2. ESD data available upon request.

3. For more information, refer to application note, AND8080/D.

		NCS2200 Series			
Characteristics	Symbol	Min	Min Typ		Unit
Input Hysteresis $T_A = 25^{\circ}C$	V _{HYS}	2.0	8.0	20	mV
Input Offset Voltage	V _{IO}				mV
$V_{CC} = 0.85 V$		10	0.5	.10	
$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to 105°C		-10 -12	0.5	+10 +12	
$V_{CC} = 3.0 V$					
$T_{A} = 25^{\circ}C$		-6.0	0.5	+6.0	
$T_A = -40^{\circ}$ C to 105°C V _{CC} = 6.0 V		-8.0	_	+8.0	
$T_A = 25^{\circ}C$		-5.0	0.5	+5.0	
$T_A = -40^{\circ}C$ to $105^{\circ}C$		-7.0	-	+7.0	
Common Mode Voltage Range	V _{CM}	-	$V_{\mbox{\scriptsize EE}}$ to $V_{\mbox{\scriptsize CC}}$	-	V
Output Leakage Current (NCS2202) V_{CC} = 6.0 V	I _{LEAK}	-	3.3	-	nA
Output Short–Circuit Sourcing or Sinking (V _{out} = GND)	I _{SC}	-	70	-	mA
Common Mode Rejection Ratio $V_{CM} = V_{CC}$	CMRR	53	65	-	dB
Input Bias Current	I _{IB}	-	1.0	-	pА
Power Supply Rejection Ratio ΔV_S = 2.575 V	PSRR	45	55	-	dB
Supply Current	Icc				μA
$V_{CC} = 0.85 V$ $T_A = 25^{\circ}C$		_	10	15	
$T_A = -40^{\circ}C$ to $105^{\circ}C$			-	17	
$V_{CC} = 3.0 V$			10	15	
$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to 105°C		-	10 _	15 17	
$V_{CC} = 6.0 V$					
$T_{A} = 25^{\circ}C$		-	10	15	
$T_A = -40^\circ C \text{ to } 105^\circ C$		-	-	17	
Output Voltage High (NCS2200) V _{CC} = 0.85 V, I _{source} = 0.5 mA	V _{OH}				V
$T_A = 25^{\circ}C$		V _{CC} – 0.2	V _{CC} – 0.10	-	
$T_A = -40^{\circ}C$ to $105^{\circ}C$		V _{CC} – 0.225	-		
$V_{CC} = 3.0 \text{ V}, \text{ I}_{source} = 3.0 \text{ mA}$ $T_{A} = 25^{\circ}\text{C}$		V _{CC} – 0.2	V _{CC} – 0.12		
$T_A = -40^{\circ}$ C to 105°C		V _{CC} – 0.25	-	_	
$V_{CC} = 6.0 \text{ V}, I_{source} = 5.0 \text{ mA}$					
T _A = 25°C T _A = -40°C to 105°C		V _{CC} – 0.2 V _{CC} – 0.25	V _{CC} – 0.12 –	-	
Output Voltage Low	V _{OL}	· ((0.20			V
$V_{CC} = 0.85 \text{ V}, \text{ I}_{\text{sink}} = 0.5 \text{ mA}$	*OL				v
$T_A = 25^{\circ}C$		-	V _{EE} + 0.10	V _{EE} + 0.2	
$T_A = -40^{\circ}$ C to 105°C			-	V _{EE} + 0.225	
$V_{CC} = 3.0 \text{ V}, I_{sink} = 3.0 \text{ mA}$ $T_A = 25^{\circ}\text{C}$		-	V _{EE} + 0.12	V _{EE} + 0.2	
$T_A = -40^{\circ}C$ to $105^{\circ}C$			-	V _{EE} + 0.25	
$V_{CC} = 6.0 \text{ V}, \text{ I}_{sink} = 5.0 \text{ mA}$ $T_A = 25^{\circ}\text{C}$		_	V _{EE} + 0.12	V _{EE} + 0.2	
$T_A = -40^{\circ}$ C to 105°C			-	V _{EE} + 0.25	
Propagation Delay 20 mV Overdrive, $C_L = 15 \text{ pF}$					μs
	t _{PHL} t _{PLH}	-	0.7 1.1		
Output Fall Time V_{CC} = 6.0 V, C _L = 50 pF	t _{FALL}	_	20	_	ns
Output Rise Time $V_{CC} = 6.0 \text{ V}, C_L = 50 \text{ pF}$	t _{RISE}	_	16	_	ns
Powerup Time	-nioe	_	35	ļ	


ELECTRICAL CHARACTERISTICS (For all values $V_{CC} = 0.85$ V to 6.0 V, $V_{EE} = 0$ V, $T_A = 25^{\circ}$ C, unless otherwise noted.) (Note 4)


4. The limits over the extended temperature range are guaranteed by design only.


		NCS2200A				
Characteristics	s Symbol		Min Typ		Unit	
Input Hysteresis T _A = 25°C	V _{HYS}	2.0	4.5	20	mV	
Input Offset Voltage $V_{CC} = 0.85 V$ $T_A = 25^{\circ}C$	V _{IO}	-10	0.5	+10	mV	
$T_A = -40^{\circ}$ C to 105°C $V_{CC} = 3.0 V$ $T_A = 25^{\circ}$ C $T_A = -40^{\circ}$ C to 105°C		-12 -6.0 -8.0	- 0.5 -	+12 +6.0 +8.0		
$V_{CC} = 6.0 V$ $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to 105°C		-5.0 -7.0	0.5 _	+5.0 +7.0		
Common Mode Voltage Range	V _{CM}	-	V_{EE} to V_{CC}	-	V	
Output Short–Circuit Sourcing or Sinking (V _{out} = GND)	I _{SC}	-	60	-	mA	
Common Mode Rejection Ratio $V_{CM} = V_{CC}$	CMRR	53	70	-	dB	
Input Bias Current	I _{IB}	-	1.0	-	pА	
Power Supply Rejection Ratio ΔV_S = 2.575 V	PSRR	45	80	-	dB	
Supply Current $V_{CC} = 0.85 V$ $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to $105^{\circ}C$	I _{CC}	-	7.5	15 17	μA	
		-	8.0 -	15 17		
$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to 105°C		-	9.0 _	15 17		
Output Voltage High $V_{CC} = 0.85 \text{ V}, I_{source} = 0.5 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$	V _{OH}	V _{CC} – 0.25 V _{CC} – 0.275	V _{CC} – 0.10 –	-	V	
$V_{CC} = 3.0 \text{ V}, I_{source} = 3.0 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$ $V_{CC} = 6.0 \text{ V}, I_{source} = 5.0 \text{ mA}$		V _{CC} – 0.3 V _{CC} – 0.35	V _{CC} - 0.12 -	-		
$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to 105°C		V _{CC} - 0.3 V _{CC} - 0.35	V _{CC} – 0.12 –	-		
Output Voltage Low $V_{CC} = 0.85 \text{ V}, I_{sink} = 0.5 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$ $V_{CC} = 0.01 \text{ J} \text{ J} \text{ so } 0.01 \text{ J} \text{ so } 0.$	V _{OL}	-	V _{EE} + 0.10 –	V _{EE} + 0.25 V _{EE} + 0.275	V	
$V_{CC} = 3.0 \text{ V}, \text{ I}_{sink} = 3.0 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$ $V_{CC} = 6.0 \text{ V}, \text{ I}_{sink} = 5.0 \text{ mA}$		-	V _{EE} + 0.12 -	V _{EE} + 0.3 V _{EE} + 0.35		
$T_{A} = 25^{\circ}C$ $T_{A} = -40^{\circ}C$ to 105°C		-	V _{EE} + 0.12 -	V _{EE} + 0.3 V _{EE} + 0.35		
Propagation Delay 20 mV Overdrive, $C_L = 15 \text{ pF}$	t _{PHL} t _{PLH}		0.5 0.5		μs	
Output Fall Time V_{CC} = 6.0 V, C_L = 50 pF (Note 6)	t _{FALL}	-	20	-	ns	
Output Rise Time V_{CC} = 6.0 V, C_{L} = 50 pF (Note 6)	t _{RISE}	_	16	_	ns	

ELECTRICAL CHARACTERISTICS (For all values V_{CC} = 0.85 V to 6.0 V, V_{EE} = 0 V, T_A = 25°C, unless otherwise noted.) (Note 5)

The limits over the extended temperature range are guaranteed by design only.
 Input signal: 1 kHz, squarewave signal with 10 ns edge rate.

OPERATING DESCRIPTION

The NCS2200 Series is an industry first sub-one volt, low power comparator family. This series is designed for rail-to-rail input and output performance. These devices consume only 10 μ A of supply current while achieving a typical propagation delay of 1.1 μ s at a 20 mV input overdrive. Figures 10 and 11 show propagation delay with various input overdrives. This comparator family is guaranteed to operate at a low voltage of 0.85 V up to 6.0 V. This is accomplished by the use of a modified analog CMOS process that implements depletion MOSFET devices. The common-mode input voltage range extends 0.1 V beyond the upper and lower rail without phase inversion or other adverse effects. This series is available in the SOT-23-5

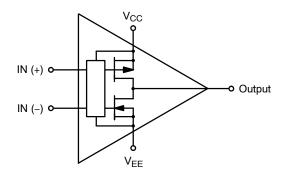


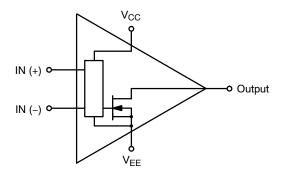
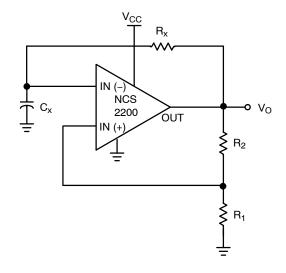
Figure 15. NCS2200SNxT1/NCS2200A Complementary Output Configuration

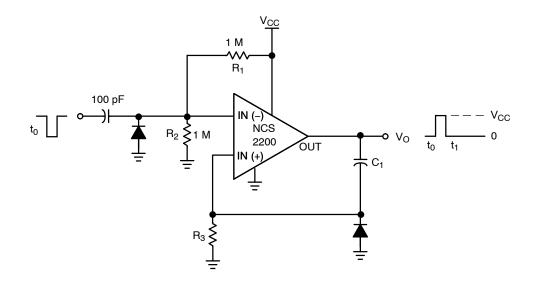
package. Additionally, the NCS2200 device is available in the tiny DFN 2x2.2 package and the SC70–5 package. NCS2200A is available in UDFN package.

Output Stage

The NCS2200 has a complementary P and N Channel output stage that has capability of driving a rail-to-rail output swing with a load ranging up to 5.0 mA. It is designed such that shoot-through current is minimized while switching. This feature eliminates the need for bypass capacitors under most circumstances.

The NCS2202 has an open drain N-channel output stage that can be pulled up to 6.0 V (max) with an external resistor. This facilitates mixed voltage system applications.


Figure 16. NCS2202SNxT1 Open Drain Output Configuration

The oscillation frequency can be programmed as follows:

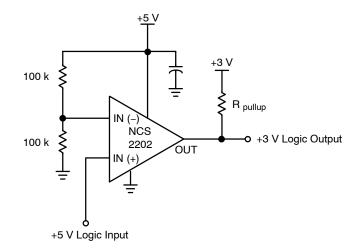

$$f = \frac{1}{T} = \frac{1}{2.2 \text{ R}_{\text{X}} \text{C}_{\text{X}}}$$

Figure 17. Schmitt Trigger Oscillator

The resistor divider R_1 and R_2 can be used to set the magnitude of the input pulse. The pulse width is set by adjusting C_1 and R_3 .

Figure 18. One-Shot Multivibrator

This circuit converts 5 V logic to 3 V logic. Using the NCS2202/3 allows for full 5 V logic swing without creating overvoltage on the 3 V logic input.

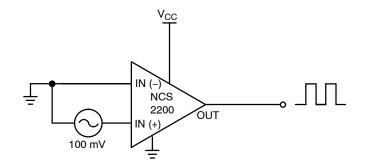


Figure 20. Zero-Crossing Detector

ORDERING INFORMATION

Device	Pinout Style	Output Type	Package	Shipping [†]
NCS2200AMUT1G	N/A	Complementary	UDFN (Pb-Free)	3000 / Tape & Reel
NCS2200SN1T1	1	Complementary	SOT-23-5 (TSOP-5)	3000 / Tape & Reel
NCS2200SN1T1G	1	Complementary	SOT-23-5 (TSOP-5) (Pb-Free)	3000 / Tape & Reel
NCS2200SN2T1	2	Complementary	SOT-23-5 (TSOP-5)	3000 / Tape & Reel
NCS2200SN2T1G	2	Complementary	SOT-23-5 (TSOP-5) (Pb-Free)	3000 / Tape & Reel
NCS2200SQ2T2	2	Complementary	SC70-5	3000 / Tape & Reel
NCS2200SQ2T2G	2	Complementary	SC70-5 (Pb-Free)	3000 / Tape & Reel
NCS2200SQLT1	N/A	Complementary	DFN, 2x2.2	3000 / Tape & Reel
NCS2200SQLT1G	N/A	Complementary	DFN, 2x2.2 (Pb-Free)	3000 / Tape & Reel
NCS2202SN1T1	1	Open Drain	SOT-23-5 (TSOP-5)	3000 / Tape & Reel
NCS2202SN1T1G	1	Open Drain	SOT-23-5 (TSOP-5) (Pb-Free)	3000 / Tape & Reel
NCS2202SQ1T2G	1	Open Drain	SC70-5 (Pb-Free)	3000 / Tape & Reel
NCS2202SN2T1	2	Open Drain	SOT-23-5 (TSOP-5)	3000 / Tape & Reel
NCS2202SN2T1G	2	Open Drain	SOT-23-5 (TSOP-5) (Pb-Free)	3000 / Tape & Reel
NCS2202SQ2T2G	2	Open Drain	SC70–5 (Pb–Free)	3000 / Tape & Reel

This device contains 93 active transistors.

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAMS

- x = I for NCS2200SN1T1 J for NCS2200SN2T1 M for NCS2202SN1T1 N for NCS2202SN2T1
- A = Assembly Location

Y = Year

- W = Work Week
- = Pb-Free Package

(Note: Microdot may be in either location)

CB = Specific Device Code

= Pb-Free Package

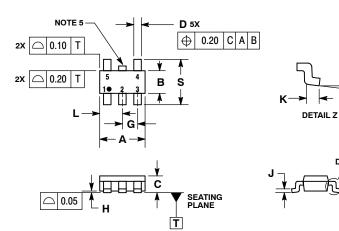
(Note: Microdot may be in either location)

*Date Code overbar and underbar may vary depending upon manufacturing location.

CBx	=	Specific Device Code
х	=	A for NCS2200SQ2T2
		D for NCS2202SQ1T2G
		E for NCS2202SQ2T2G
М	=	Date Code*

Pb-Free Package

(Note: Microdot may be in either location) *Date Code orientation, position, and underbar may vary depending upon manufacturing location.

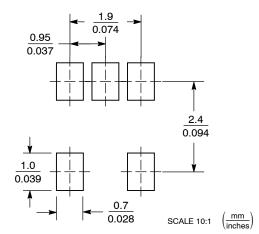


(Top View)

- S = Specific Device Code
- M = Date Code
- = Pb–Free Package

PACKAGE DIMENSIONS

SOT-23-5 / TSOP-5 / SC59-5 **SN SUFFIX** PLASTIC PACKAGE CASE 483-02 **ISSUE H**

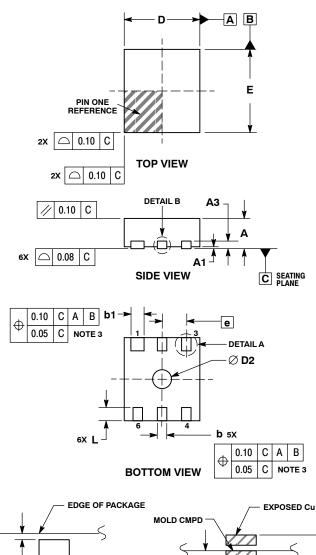


NOTES:

- IDENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- 5.
- BUHRS. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS		
DIM	MIN	MAX	
Α	3.00	BSC	
в	1.50	BSC	
С	0.90	1.10	
D	0.25	0.50	
G	0.95 BSC		
н	0.01	0.10	
J	0.10	0.26	
к	0.20	0.60	
L	1.25	1.55	
М	0 °	10 °	
S	2.50	3.00	

SOLDERING FOOTPRINT*



DETAIL Z

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

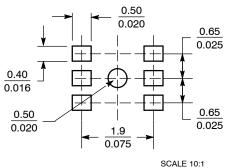
PACKAGE DIMENSIONS

DFN6, 2x2.2 SQL SUFFIX CASE 488-03 ISSUE G

A1

DETAIL B Side View

(Optional)


1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. 3.

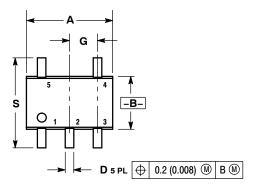
NOTES:

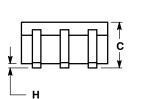
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30mm FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. TERMINAL 6 MAY HAVE MOLD COMPOUND MATEPIAL ALONG SIDE EDGE
- 4. 5.
- MATERIAL ALONG SIDE EDGE. 6. DETAILS A AND B SHOW OPTIONAL VIEWS
- FOR END OF TERMINAL LEAD AT EDGE OF PACKAGE AND SIDE EDGE OF PACKAGE.

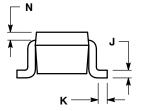
	MILLIMETERS				
DIM	MIN NOM MAX				
Α	0.80	0.90	1.00		
A1	0.00	0.03	0.05		
A3		0.20 REF			
b	0.20	0.25	0.30		
b1	0.30	0.35	0.40		
D	2.00 BSC				
D2	0.40	0.50	0.60		
E	2.20 BSC				
е	0.65 BSC				
L	0.30	0.35	0.40		
L1	0.00	0.05	0.10		

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

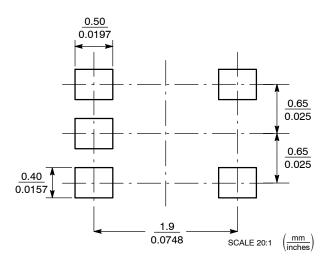

DETAIL A **Bottom View** (Optional)


L1


A3

PACKAGE DIMENSIONS

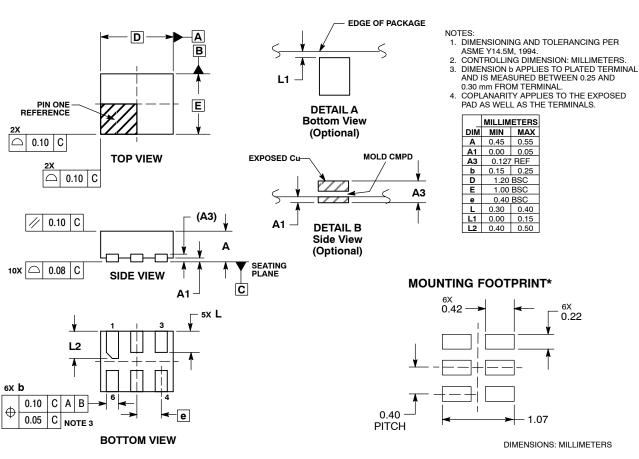
SC70-5/SC88A (SOT-353) SQ SUFFIX CASE 419A-02 ISSUE J



NOTES:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INCHES		MILLIM	IMETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026 BSC		0.65 BSC		
Н		0.004		0.10	
ſ	0.004	0.010	0.10	0.25	
K	0.004	0.012	0.10	0.30	
N	0.008 REF		0.20	REF	
s	0.079	0.087	2.00	2.20	



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

UDFN6, 1.2x1.0, 0.4P CASE 517AA-01 ISSUE C

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use personal and sole soleging or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative