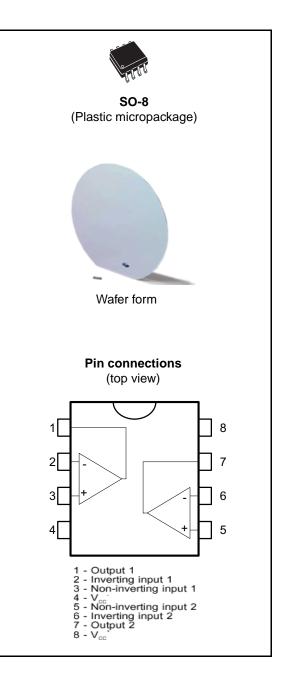


LM2903H

Low power dual voltage comparators


Features

- Wide single supply voltage range or dual supplies +2 V to +36 V or ±1 V to ±18 V
- Very low supply current (0.4 mA) independent of supply voltage (1 mW/comparator at +5 V)
- Low input bias current: 25 nA typ.
- Low input offset current: ±5 nA typ.
- Input common-mode voltage range includes ground
- Low output saturation voltage: 250 mV typ. (I_O = 4 mA)
- Differential input voltage range equal to the supply voltage
- TTL, DTL, ECL, MOS, CMOS compatible outputs

Description

This device consists of two independent low power voltage comparators designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

These comparators also have a unique characteristic in that the input common-mode voltage range includes ground even though operated from a single power supply voltage.

March 2008

1

Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit V		
V _{CC}	Supply voltage	±18 or 36			
V _{id}	Differential input voltage	±36	V		
V _{in}	Input voltage	-0.3 to +36	V		
	Output short-circuit to ground ⁽¹⁾	20	mA		
R _{thja}	Thermal resistance junction to ambient ⁽²⁾ (SO-8)	125	°C/W		
R _{thjc}	Thermal resistance junction to case ⁽²⁾ (SO-8)	40	°C/W		
Tj	Maximum junction temperature	150	°C		
ESD	HBM: human body model (3)800MM: machine model (4)200CDM: charged device model (5)1500		V		
T _{stg}	Storage temperature range	-65 to +150	°C		

Table 1. Absolute maximum ratings (AMR)

Short-circuit from the output to V_{CC}⁺ can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA, independent of the magnitude of V_{CC}⁺.

2. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.

 Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

4. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.

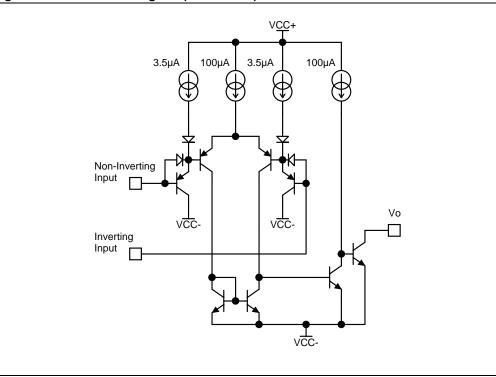
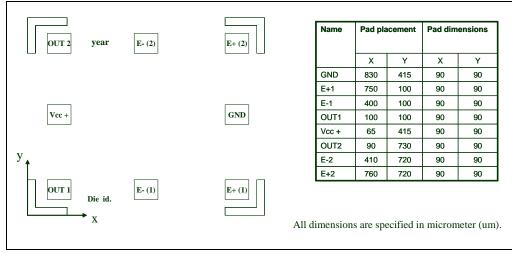

Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2.Operating conditions

Symbol	Parameter	Value	Unit
V _{CC} ⁺	Supply voltage	2 to 36	V
T _{oper}	Operating free-air temperature range	-40 to +150	°C
V _{icm}	Input common mode voltage range(V _{CC} =30V) ⁽¹⁾ $T_{amb} = +25^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}$	0 to V _{CC} ⁺ -1.5 0 to V _{CC} ⁺ -2	V


 The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC}⁺ –1.5 V, but either or both inputs can go to +30 V without damage.

2 Circuit schematics

57

3 Electrical characteristics

Parameter	Min.	Тур.	Max.	Unit	
Input offset voltage ⁽¹⁾		1	7	mV	
$T_{min} \le T_{amb} \le T_{max}$			15	mv	
Input offset current		5	50	nA	
$T_{min} \le T_{amb} \le T_{max}$			150	11/3	
Input bias current ⁽²⁾		25	250	nA	
$T_{min} \le T_{amb} \le T_{max}$			400		
Large signal voltage gain (V_{CC}^+ = 15V,R _L =15k Ω , V _o =1 to 11V)		200		V/mV	
Supply current (all comparators) $V_{CC}^{+}=5V$, no load $V_{CC}^{+}=30V$, no load		0.4 1	1 2.5	mA	
Differential input voltage ⁽³⁾			V _{CC} +	V	
Low level output voltage (V_{id} = -1V, I_{sink} = 4mA) Train \leq Trank \leq Trank		250	400 800	mV	
		0.1		nA	
$T_{min} \le T_{amb} \le T_{max}$			1	μA	
Output sink current ($V_{id} = -1V, V_o = 1.5V$)	6	16		mA	
$T_{min} \le T_{amb} \le T_{max}$	2			1103	
Small signal response time $^{(4)}$ (R _L = 5.1k Ω to V _{CC} ⁺)		1.3		μs	
Large signal response time ⁽⁵⁾					
TTL input (V_{ref} = +1.4 V, R _L =5.1k Ω to V_{CC}^+)					
Output signal at 50% of final value Output signal at 95% of final value			500 1	ns µs	
	Input offset voltage ⁽¹⁾ $T_{min} \leq T_{amb} \leq T_{max}$ Input offset current $T_{min} \leq T_{amb} \leq T_{max}$ Input bias current ⁽²⁾ $T_{min} \leq T_{amb} \leq T_{max}$ Large signal voltage gain (V _{CC} ⁺ = 15V,R _L =15k Ω , V _o =1 to 11V) Supply current (all comparators) $V_{CC}^{+} = 5V$, no load $V_{CC}^{+} = 30V$, no load Differential input voltage ⁽³⁾ Low level output voltage (V _{id} = -1V, I _{sink} = 4mA) $T_{min} \leq T_{amb} \leq T_{max}$ High level output current (V _{CC} ⁺ = V _o = 30V, V _{id} = 1V) $T_{min} \leq T_{amb} \leq T_{max}$ Output sink current (V _{id} = -1V, V _o = 1.5V) $T_{min} \leq T_{amb} \leq T_{max}$ Small signal response time ⁽⁴⁾ (R _L = 5.1k Ω to V _{CC} ⁺) Large signal response time ⁽⁵⁾ TTL input (V _{ref} = +1.4 V, R _L =5.1k Ω to V _{CC} ⁺) Output signal at 50% of final value	$\label{eq:response} \begin{array}{ c c c c } \hline Input offset voltage (1) \\ \hline T_{min} \leq T_{amb} \leq T_{max} \\ \hline Input offset current \\ \hline T_{min} \leq T_{amb} \leq T_{max} \\ \hline Input bias current (2) \\ \hline T_{min} \leq T_{amb} \leq T_{max} \\ \hline Large signal voltage gain (V_{CC}^+ = 15V, R_L = 15k\Omega \ V_o = 1 \ to \ 11V) \\ \hline Supply current (all comparators) \\ \hline V_{CC}^+ = 5V, no load \\ \hline V_{CC}^+ = 30V, no load \\ \hline Differential input voltage (3) \\ \hline Low level output voltage (V_{id} = -1V, I_{sink} = 4mA) \\ \hline T_{min} \leq T_{amb} \leq T_{max} \\ \hline High level output current (V_{CC}^+ = V_o = 30V, V_{id} = 1V) \\ \hline T_{min} \leq T_{amb} \leq T_{max} \\ \hline Output sink current (V_{id} = -1V, V_o = 1.5V) \\ \hline T_{min} \leq T_{amb} \leq T_{max} \\ \hline Small signal response time (4) (R_L = 5.1k\Omega \ to \ V_{CC}^+) \\ \hline Large signal response time (5) \\ TTL input (V_{ref} = +1.4 \ V, R_L = 5.1k\Omega \ to \ V_{CC}^+) \\ Output signal at 50\% \ of final value \\ \hline \end{array}$	$\begin{array}{ c c c c } \hline P_{A} & P_{A}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Table 3. $V_{CC}^+ = 5V, V_{CC}^- = GND, T_{amb} = 25^{\circ}C$ (unless otherwise specified)

1. At output switch point, $V_0 \approx 1.4$ V, $R_S = 0 \Omega$ with V_{CC}^+ from 5 V to 30 V, and over the full input common-mode range (0 V to V_{CC}^+ -1.5 V).

2. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so there is no load charge on the reference of input lines.

 Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V (or 0.3 V below the negative power supply, if used)

4. The response time specified is for a 100 mV input step with 5 mV overdrive.

5. Maximum values are guaranteed by design and evaluation.

Response time for various input

25

2

1.5

overdrives - negative transition

Input overdrive 5mV

0.5

1

TIME (μs)

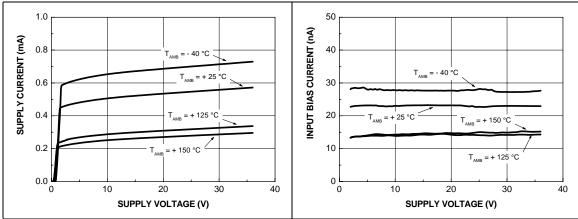


Figure 6.

INPUT VOLTAGE (mV) OUTPUT VOLTAGE (V)

6

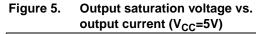
5

4 3 2

1

0

0 -50


-100

20mV

100m

0

Figure 3. Supply current vs. supply voltage Figure 4. Input current vs. supply voltage

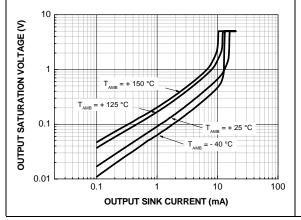
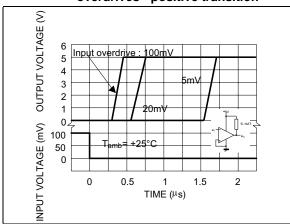



Figure 7. Response time for various input overdrives - positive transition

57

4 Package information

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

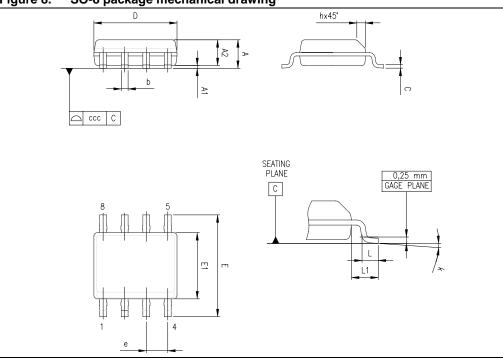


Figure 8. SO-8 package mechanical drawing

Table 4. SO-8 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	1°		8°	1°		8°
ссс			0.10			0.004

5 Ordering information

Table 5. Order codes

Order code	Temperature range	Package	Packing	Marking
JLM2903H- E6D1		Wafer		
LM2903HD LM2903HDT	-40°C, +150°C	SO-8	Tube or Tape & reel	2903H
LM2903HYD ⁽¹⁾ LM2903HYDT ⁽¹⁾		SO-8 (Automotive grade)	Tube or Tape & reel	2903HY

1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

6 Revision history

Table 6. Document revision history

Date	Revision	Changes
25-Sep-2003	1	Initial release.
23-Aug-2005	2	PPAP references inserted in the datasheet, see order codes table.
27-Mar-2008	3	Added ESD parameters in AMR table. Updated document format.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

9/9