Low-Cost, Ultra-Small, 3بA Single-Supply Comparators

General Description

The MAX9075/MAX9077 single/dual comparators are optimized for 3 V and 5 V single-supply applications. These comparators have a 580 ns propagation delay and consume just $3 \mu \mathrm{~A}$ per comparator. The combination of low-power, single-supply operation down to 2.1 V , and ultra-small footprint makes these devices ideal for all portable applications.
The MAX9075/MAX9077 have a common-mode input voltage range of -0.2 V to $\mathrm{Vcc}-1.2 \mathrm{~V}$. Unlike many comparators, there is no differential clamp between the inputs, allowing the differential input voltage range to extend rail-to-rail. All inputs and outputs tolerate a continuous short-circuit fault condition to either rail.

The design of the output stage limits supply-current surges while switching (typical of many other comparators), minimizing power consumption under dynamic conditions. Large internal push-pull output drivers allow rail-to-rail output swing with loads up to 2 mA , making these devices ideal for interface with TTL/CMOS logic.
The MAX9075 single comparator is available in 5 -pin SC70 and SOT23 packages, while the MAX9077 dual comparator is available in 8 -pin SOT23, $\mu \mathrm{MAX}$ ®, and SO packages.

Applications

Battery-Powered Systems
Threshold Detectors/Discriminators
Keyless Entry Systems
IR Receivers
Digital Line Receivers
Pin Configurations

$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

- 580ns Propagation Delay from Only $3 \mu \mathrm{~A}$
- 2.1 V to 5.5 V Single-Supply Operation
- Ground-Sensing Inputs
- Rail-to-Rail Outputs
- No Output Phase Inversion for Overdriven Inputs
- No Differential Clamp Across Inputs
- Available in Ultra-Small Packages

5-Pin SC70 (MAX9075)
8-Pin SOT23 (MAX9077)

Ordering Information

PART *	PIN- PACKAGE	TOP MARK	PKG CODE
MAX9075EXK-T	5 SC70-5	AAC	X5-1
MAX9075EUK-T	5 SOT23-5	ADLX	U5-1
MAX9077EKA-T	8 SOT23-8	AAAD	K8-2
MAX9077EUA	8μ MAX	-	U8-1
MAX9077ESA	8 SO	-	S8-4

*All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Typical Operating Circuit

Low-Cost, Ultra-Small, 3بA Single-Supply Comparators

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
$V_{C c}$ to GND
All Other Pins to GND...........................-0.3V to (VCC +0.3 V)
Current into Input Pins .. $\pm 20 \mathrm{~mA}$
Duration of Output Short-Circuit to GND or VCCContinuous
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
5 -Pin SC70 (derate $2.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 200 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=-0.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

Note 1: All devices are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: Inferred from CMRR. Either input can be driven to the absolute maximum limit without output inversion, as long as the other input is within the input voltage range.
Note 3: Guaranteed by design.

Low-Cost, Ultra-Small, 3нA Single-Supply Comparators

Typical Operating Characteristics

$\left(\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0,100 \mathrm{mV}\right.$ overdrive, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Cost, Ultra-Small, 3بA Single-Supply Comparators

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0,100 \mathrm{mV}\right.$ overdrive, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Cost, Ultra-Small, 3нA Single-Supply Comparators

Typical Operating Characteristics (continued)

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0,100 \mathrm{mV}\right.$ overdrive, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

100ns/div

100ns/div

Low-Cost, Ultra-Small, 3uA Single-Supply Comparators

PIN				NAME	
MAX9075		MAX9077			FUNCTION
SOT23	SC70	$\mu \mathrm{MAX} / \mathrm{SO}$	SOT23		
1	1	-	-	OUT	Comparator Output
-	-	1	1	OUTA	Output of Comparator A
2	2	4	2	GND	Ground
3	3	-	-	$\mathrm{IN}+$	Noninverting Comparator Input
-	-	3	4	INA+	Noninverting Input of Comparator A
4	4	-	-	IN-	Inverting Comparator Input
-	-	2	3	INA-	Inverting Input of Comparator A
5	5	8	8	VCC	Positive Supply Voltage
-	-	5	5	INB+	Noninverting Input of Comparator B
-	-	6	6	INB-	Inverting Input of Comparator B
-	-	7	7	OUTB	Output of Comparator B

Detailed Description
The MAX9075/MAX9077 feature a 580ns propagation delay from an ultra-low supply current of only $3 \mu \mathrm{~A}$ per comparator. These devices are capable of single-supply operation in the 2.1 V to 5.5 V range. Large internal output drivers allow rail-to-rail output swing with up to 2 mA loads. Both comparators offer a push-pull output that sinks and sources current.

Comparator Output

The MAX9075/MAX9077 are designed to maintain a low-supply current during repeated transitions by limiting the shoot-through current.

Noise Considerations, Comparator Input

The input common-mode voltage range for these devices extends from -0.2V to Vcc - 1.2V. Unlike many other comparators, the MAX9075/MAX9077 can operate at any differential input voltage within these limits. Input bias current is typically $-5 n \mathrm{~A}$ if the input voltage is between the supply rails.
Although the comparators have a very high gain, useful gain is limited by noise. The comparator has a wideband peak-to-peak noise of approximately $70 \mu \mathrm{~V}$.

Applications Information

Adding Hysteresis

Hysteresis extends the comparator's noise margin by increasing the upper threshold and decreasing the lower threshold. A voltage divider from the output of the comparator sets the trip voltage. Therefore, the trip voltage is related to the output voltage. Set the hysteresis with three resistors using positive feedback, as shown in Figure 1.
The design procedure is as follows:

1) Choose R3. The leakage current of IN+ may cause a small error; however, the current through R3 can be approximately 500nA and still maintain accuracy. The added supply current due to the circuit at the trip point is $V_{C c} / R 3$; $10 \mathrm{M} \Omega$ is a good practical value for R3, as this keeps the current well below the supply current of the chip.
2) Choose the hysteresis voltage (VHYS), which is the voltage between the upper and lower thresholds. In this example, choose V HYS $=50 \mathrm{mV}$ and assume $V_{\text {REF }}=1.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
3) Calculate R1 as follows:
$R 1=R 3 \times V_{H Y S} / V_{C C}=10 \mathrm{M} \Omega \times 0.05 / 5=100 \mathrm{k} \Omega$

Low-Cost, Ultra-Small, 3нA Single-Supply Comparators

4) Choose the threshold voltage for V_{IN} rising ($\mathrm{V}_{\mathrm{THR}}$). In this example, choose $\mathrm{V}_{\mathrm{THR}}=3 \mathrm{~V}$.
5) Calculate R2 as follows:
$R 2=1 /\left\{\left[V_{\text {THR }} /\left(V_{\text {REF }} \times R 1\right)\right]-1 / R 1-1 / R 3\right\}=$
$1 /\{[3 /(1.2 \times 100 \mathrm{k} \Omega)]-1 / 100 \mathrm{k} \Omega-1 / 10 \mathrm{M} \Omega\}=67.114 \mathrm{k} \Omega$
A 1% preferred value is $64.9 \mathrm{k} \Omega$.
6) Verify the threshold voltages with these formulas:

VIN rising:

$$
V_{T H R}=V_{R E F} \times R 1(1 / R 1+1 / R 2+1 / R 3)
$$

VIN falling:

$$
V_{\mathrm{THF}}=\mathrm{V}_{\mathrm{THR}}-\left(\mathrm{R} 1 \times \mathrm{V}_{\mathrm{CC}}\right) / \mathrm{R} 3
$$

7) Check the error due to input bias current ($5 n A$). If the error is too large, reduce R3 and recalculate.
$V_{T H}=I_{B}(R 1 \times R 2 \times R 3) /(R 1+R 2+R 3)=0.2 m V$
Board Layout and Bypassing
Use 10nF power-supply bypass capacitors. Use 100nF bypass capacitors when supply impedance is high, when supply leads are long, or when excessive noise is expected on the supply lines. Minimize signal trace lengths to reduce stray capacitance. Minimize the capacitive coupling between IN - and OUT. For slowmoving input signals (rise time > 1ms) use a 1 nF capacitor between $\mathrm{IN}+$ and IN -.

Chip Information

MAX9075 TRANSISTOR COUNT: 86
MAX9077 TRANSISTOR COUNT: 142

Figure 1. Adding Hysteresis

Pin Configurations (continued)

TOP VIEW

Low-Cost, Ultra-Small, 3بA Single-Supply Comparators

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 3: 1-4, 6, 8
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

