

TS331

Micropower low-voltage rail-to-rail comparator

Features

- Supply operation from 1.6 to 5 V
- Low current consumption: 20 μA
- Rail-to-rail inputs
- Wide temperature range: -40°C to +125°C
- Low output saturation voltage
- Low propagation delay: 210 ns
- Open-drain output
- ESD tolerance: 2 kV HBM/200 V MM
- SMD packages: SC70-5 and SOT23-5

Applications

- Mobile phones
- Notebooks and PDAs
- Battery supplied electronics
- General-purpose portable devices
- General-purpose low voltage applications

Description

The TS331 is a single micropower and low-voltage comparator. It can operate with a supply voltage ranging from 1.6 to 5 V with only 20 μ A current consumption. In addition, rail-to-rail inputs make it a perfect choice for low-voltage applications.

SOT23-5 and SC70-5 package availability is a real advantage for space saving constraints. The SC70-5 is approximately half the size of the SOT23-5.

The TS331 is specified for a wide temperature range of -40° C to $+125^{\circ}$ C, making it ideal for a wide range of applications.

1 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	5.5	V
V _{ID}	Differential input voltage ⁽²⁾	± 5.5	V
V _{IN}	Input voltage range	$(V_{CC}-)$ -0.3 to $(V_{CC}+)$ + 0.3	V
R _{thja}	Thermal resistance junction to ambient ⁽³⁾ SC70-5 SOT23-5	205 250	°C/W
R _{thjc}	Thermal resistance junction to case ⁽³⁾ SC70-5 SOT23-5	172 81	°C/W
T _{stg}	Storage temperature	-65 to +150	°C
Тj	Junction temperature	150	°C
T _{LEAD}	Lead temperature (soldering 10 seconds)	260	°C
	Human body model (HBM) ⁽⁴⁾	2000	
ESD	Machine model (MM) ⁽⁵⁾	200	V
	Charged device model (CDM) ⁽⁶⁾	1500	1
	Latch-up immunity	200	mA

Table 1. Absolute maximum ratings

1. All voltage values, except differential voltage, are referenced to V_{cc}-.

- 2. The magnitude of input and output voltages must never exceed the supply rail ±0.3 V.
- 3. Short-circuits can cause excessive heating. These values are typical.
- 4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- 5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 6. Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
T _{oper}	Operating temperature range	-40 to +125	°C
V _{CC}	Supply voltage (V _{CC} +) - (V _{CC} -) -40°C < T _{amb} < +125°C	1.6 to 5.0	V
V _{ICM}	Common mode input voltage range $T_{amb} = +25^{\circ}C$ $-40^{\circ}C < T_{amb} < +125^{\circ}C$	(V _{CC} -) -0.2 to (V _{CC} +)+0.2 (V _{CC} -) to (V _{CC} +)	V

2 Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{IO}	Input offset voltage	$V_{ICM} = 0 V$ -40°C < T _{amb} < +125°C		0.5	5 6	mV	
ΔV_{IO}	Input offset voltage drift	-40°C < T _{amb} < +125°C		4.5		μV/°C	
I _{IB}	Input bias current ⁽²⁾	-40°C < T _{amb} < +125°C		25	40 100	nA	
I _{IO}	Input offset current ⁽²⁾	-40°C < T _{amb} < +125°C		1	10 100	nA	
I _{CC}	Supply current	No load, output low, $V_{ICM} = 0 V$ -40°C < T _{amb} < +125°C		20	26 30	μA	
100		No load, output high, $V_{ICM} = 0 V$ -40°C < T _{amb} < +125°C		22	29 33	μυ .	
I _{OH}	Output current leakage	$V_{OUT} = V_{CC}+$ -40°C < T _{amb} < +125°C		1	10 500	nA	
V _{OL}	Output voltage low	$I_{SINK} = 1 \text{ mA}$ -40°C < T _{amb} < +125°C		24	30 50	mV	
I _{SINK}	Output sink current	$V_{OUT} = 1.5 V$ -40°C < T _{amb} < +125°C	20 15	22		mA	
CMRR	Common mode rejection ratio	0 < V _{ICM} < 1.8 V	50	68		dB	
TP _{HL}	Propagation delay ⁽³⁾ High to low output level	$\label{eq:V_ICM} \begin{array}{l} V_{ICM} = 0 \ V, \ R_L = 5.1 \ k\Omega, \ C_L = 50 \ pF \\ Overdrive = 10 \ mV \\ Overdrive = 100 \ mV \end{array}$		300 210	310	ns	
TP _{LH}	Propagation delay ⁽⁴⁾ Low to high output level	$\label{eq:VICM} \begin{array}{l} V_{ICM} = 0 \ V, \ R_L = 5.1 \ k\Omega, \ C_L = 50 \ pF \\ Overdrive = 10 \ mV \\ Overdrive = 100 \ mV \end{array}$		540 420	620	ns	

Table 3. V_{CC} + = +1.8 V, V_{CC} - = 0 V, T_{amb} = +25°C (unless otherwise specifie	d) ⁽¹⁾
--	-------------------

1. All values over the temperature range are guaranteed through correlation and simulation. No production tests have been performed at the temperature range limits.

2. Maximum values include unavoidable inaccuracies of the industrial tests.

3. TP_{HL} is measured when the output signal crosses a voltage level at 50% of Vcc with the following conditions: inverting input voltage (IN-) = VICM and non-inverting input voltage (IN+) moving from VICM + 100 mV to VICM - overdrive.

TP_{LH} is measured when the output signal crosses a voltage level at 50% of Vcc with the following conditions: inverting input voltage (IN-) = VICM and non-inverting input voltage (IN+) moving from VICM - 100 mV to VICM + overdrive.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input offset voltage	$V_{ICM} = 0 V$ -40°C < T _{amb} < +125°C		0.5	5 6	mV
ΔV_{IO}	Input offset voltage drift	-40°C < T _{amb} < +125°C		3.3		μV/°C
I _{IB}	Input bias current ⁽²⁾	-40°C < T _{amb} < +125°C		25	40 100	nA
I _{IO}	Input offset current ⁽²⁾	-40°C < T _{amb} < +125°C		1	10 100	nA
Icc	Supply current	No load, output low, V _{ICM} = 0 V -40°C < T _{amb} < +125°C		21	27 31	μA
.00		No load, output high, $V_{ICM} = 0 V$ -40°C < T _{amb} < +125°C		23	30 34	P
I _{OH}	Output current leakage	$V_{OUT} = V_{CC}+$ -40°C < T _{amb} < +125°C		1	10 500	nA
V _{OL}	Output voltage low	$I_{SINK} = 1 \text{ mA}$ -40°C < T _{amb} < +125°C		17	30 50	mV
I _{SINK}	Output sink current	$V_{OUT} = 1.5 V$ -40°C < T _{amb} < +125°C	40 30	47		mA
CMRR	Common mode rejection ratio	0 < V _{ICM} < 2.7 V -40°C < T _{amb} < +125°C	54 53	74		dB
TP _{HL}	Propagation delay ⁽³⁾ High to low output level	$\label{eq:CM} \begin{array}{l} V_{ICM} = 0 \ V, \ R_L = 5.1 \ k\Omega, \ C_L = 50 \ pF \\ Overdrive = 10 \ mV \\ Overdrive = 100 \ mV \end{array}$		320 220	320	ns
TP _{LH}	Propagation delay ⁽⁴⁾ Low to high output level	$V_{ICM} = 0 V$, $R_L = 5.1 k\Omega$, $C_L = 50 pF$ Overdrive = 10 mV Overdrive = 100 mV		550 420	640	ns

Table 4.	V_{CC} + = +2.7 V, V_{CC} - = 0 V, T_{amb} = +25°C (unless otherwise specified) ⁽¹⁾
Table 4.	V _{CC} + = +2.7 V, V _{CC} - = 0 V, T _{amb} = +25°C (unless otherwise specified)

1. All values over the temperature range are guaranteed through correlation and simulation. No production tests have been performed at the temperature range limits.

2. Maximum values include unavoidable inaccuracies of the industrial tests.

3. TP_{HL} is measured when the output signal crosses a voltage level at 50% of Vcc with the following conditions: Inverting input voltage (IN-) = VICM and Non-inverting input voltage (IN+) moving from VICM + 100 mV to VICM - overdrive.

 TP_{LH} is measured when the output signal crosses a voltage level at 50% of Vcc with the following conditions: Inverting input voltage (IN-) = VICM and Non-inverting input voltage (IN+) moving from VICM - 100 mV to VICM + overdrive.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input offset voltage	$V_{ICM} = 0 V$ -40°C < T _{amb} < +125°C		0.5	5 6	mV
ΔV_{IO}	Input offset voltage drift	-40°C < T _{amb} < +125°C		1.3		μV/°C
I _{IB}	Input bias current ⁽²⁾	-40°C < T _{amb} < +125°C		30	40 100	nA
I _{IO}	Input offset current ⁽²⁾	-40°C < T _{amb} < +125°C		1	10 100	nA
Icc	Supply current	No load, output low, V _{ICM} = 0 V -40°C < T _{amb} < +125°C		23	30 34	μA
100		No load, output high, $V_{ICM} = 0 V$ -40°C < T _{amb} < +125°C		26	34 38	μ
I _{OH}	Output current leakage	$V_{OUT} = V_{CC}+$ -40°C < T _{amb} < +125°C		1	10 600	nA
V _{OL}	Output voltage low	$I_{SINK} = 4 \text{ mA}$ -40°C < T _{amb} < +125°C		48	60 80	mV
I _{SINK}	Output sink current	V _{OUT} = 1.5 V -40°C < T _{amb} < +125°C	82 68	93		mA
A _V	Voltage gain		40	100		V/mV
CMRR	Common mode rejection ratio	0 < V _{ICM} < 5 V -40°C < T _{amb} < +125°C	60 58	79		dB
SVR	Supply voltage rejection	$\Delta V_{CC} = 1.8 \text{ to } 5 \text{ V}$ -40°C < T _{amb} < +125°C	56 56	75		dB
TP _{HL}	Propagation delay ⁽³⁾ High to low output level	$V_{ICM} = 0 V$, $R_L = 5.1 k\Omega$, $C_L = 50 pF$ Overdrive = 10 mV Overdrive = 100 mV		380 270	430	ns
TP _{LH}	Propagation delay ⁽⁴⁾ Low to high output level	$\label{eq:VICM} \begin{array}{l} V_{ICM} = 0 \ V, \ R_L = 5.1 \ k\Omega, \ C_L = 50 \ pF \\ Overdrive = 10 \ mV \\ Overdrive = 100 \ mV \end{array}$		570 450	720	ns

Table 5. V_{CC} + = +5 V, V_{CC} = 0 V, T_{amb} = +25°C (unless otherwise specified)⁽¹⁾

1. All values over the temperature range are guaranteed through correlation and simulation. No production tests have been performed at the temperature range limits.

2. Maximum values include unavoidable inaccuracies of the industrial tests.

 TP_{HL} is measured when the output signal crosses a voltage level at 50% of Vcc with the following conditions: Inverting input voltage (IN-) = VICM and Non-inverting input voltage (IN+) moving from VICM + 100 mV to VICM - overdrive.

 TP_{LH} is measured when the output signal crosses a voltage level at 50% of Vcc with the following conditions: Inverting input voltage (IN-) = VICM and Non-inverting input voltage (IN+) moving from VICM - 100 mV to VICM + overdrive.

TS331

Figure 1. Supply current versus supply voltage with output high, V_{ICM} = 0 V

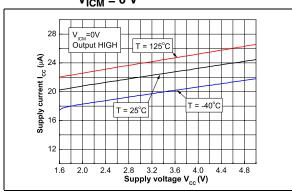


Figure 3. Supply current versus supply voltage with output low, $V_{ICM} = 0 V$

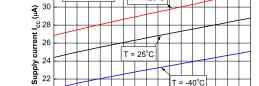
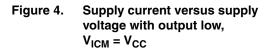


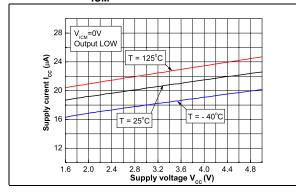
Figure 2.

34

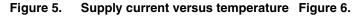
32

 $\vec{\mathbf{j}}_{1,2}^{(2)} = \vec{\mathbf{j}}_{1,2}^{(2)} + \vec{\mathbf{j}}_{1,2}^{(2)}$

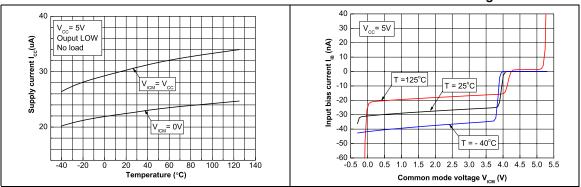

Supply current versus supply


voltage with output high,

T = 125°C


 $V_{ICM} = V_{CC}$

V_{ICM}= V_{CC} Output HIGH



36 V_{ICM}= V_{CC} Output LOW 34 T = 125°C **(**32 **(**32) _8 30 Supply current 28 26 T = 25°C 24 T = - 40°C 22 20 ∟ 1.6 2.8 3.2 3.6 4.0 Supply voltage V_{cc} (V) 2.0 2.4 4.4 4.8

Input bias current versus input common-mode voltage

Figure 7. Input current versus differential input voltage

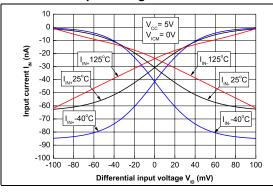


Figure 9. current, V_{CC} = 1.8 V

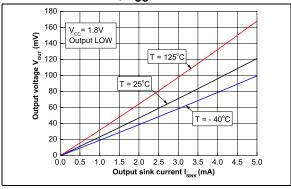
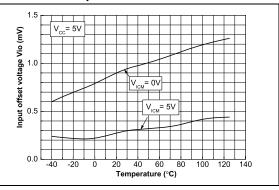
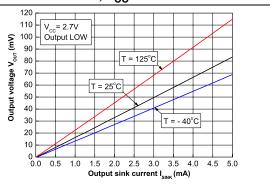
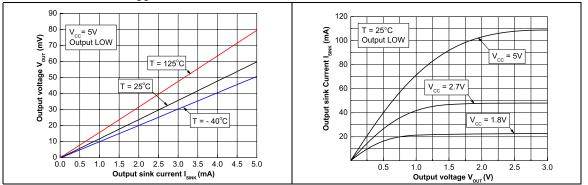
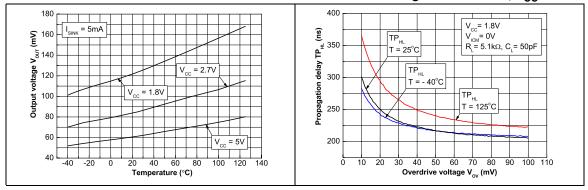




Figure 8. Input offset voltage versus temperature




Output voltage versus output sink Figure 10. Output voltage versus output sink current, V_{CC} = 2.7 V

current, V_{CC} = 5 V

Figure 11. Output voltage versus output sink Figure 12. Output sink current versus output voltage

Figure 13. Output voltage versus temperature Figure 14. Propagation delay versus overdrive with negative transition, V_{CC} = 1.8 V

Figure 15.Propagation delay versus overdrive Figure 16.Propagation delay versus common
mode voltage, $V_{CC} = 1.8 V$

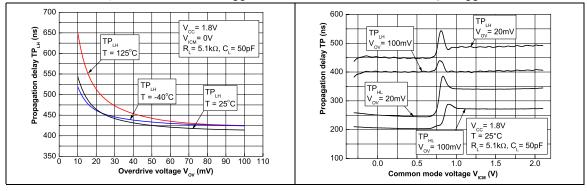
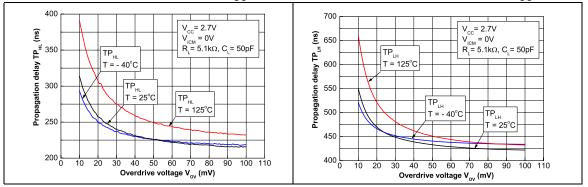



Figure 17. Propagation delay versus overdrive Figure 18. Propagation delay versus overdrive with negative transition, $V_{CC} = 2.7 V$ with positive transition, $V_{CC} = 2.7 V$

Doc ID 17272 Rev 1

57

Figure 19.Propagation delay versus commonFigure 20.Propagation delay versus overdrive
with negative transition, $V_{CC} = 5 V$

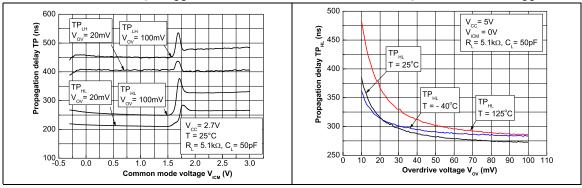


Figure 21.Propagation delay versus overdriveFigure 22.Propagation delay versus common
mode voltage, $V_{CC} = 5 V$ with positive transition, $V_{CC} = 5 V$ mode voltage, $V_{CC} = 5 V$

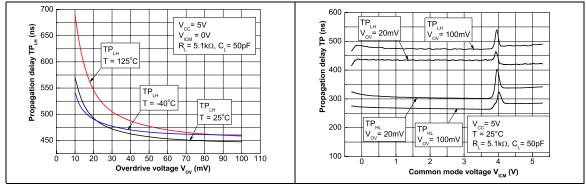
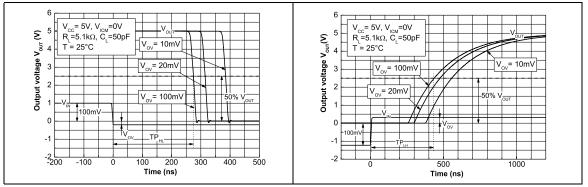
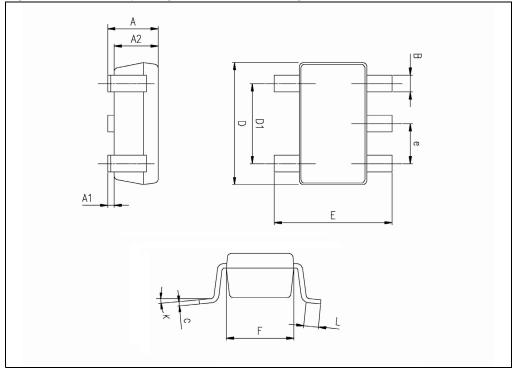



Figure 23. Propagation delay versus time with Figure 24. Propagation delay versus time with negative transition positive transition

3 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

10/15

3.1 SOT23-5 package

Figure 25. SOT23-5 package mechanical drawing

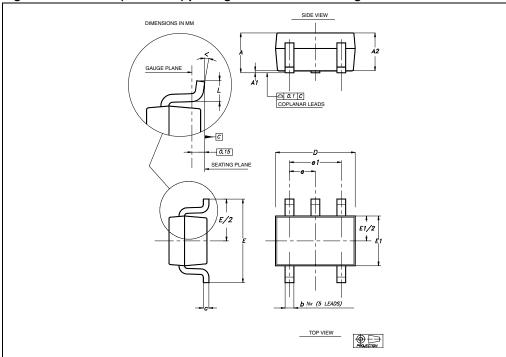


Table 6. SOT23-5 package mechanical data

			Dimer	nsions			
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.90	1.20	1.45	0.035	0.047	0.057	
A1			0.15			0.006	
A2	0.90	1.05	1.30	0.035	0.041	0.051	
В	0.35	0.40	0.50	0.013	0.015	0.019	
С	0.09	0.15	0.20	0.003	0.006	0.008	
D	2.80	2.90	3.00	0.110	0.114	0.118	
D1		1.90			0.075		
е		0.95			0.037		
Е	2.60	2.80	3.00	0.102	0.110	0.118	
F	1.50	1.60	1.75	0.059	0.063	0.069	
L	0.10	0.35	0.60	0.004	0.013	0.023	
К	0 degrees		10 degrees				

3.2 SC70-5 (SOT323-5) package

Figure 26. SC70-5 (SOT323-5) package mechanical drawing

Table 7.	SC70-5 (or SOT323-5) package mechanical data
----------	--

			Dime	nsions		
Ref		Millimeters			Inches	
	Min	Тур	Мах	Min	Тур	Max
А	0.80		1.10	0.315		0.043
A1			0.10			0.004
A2	0.80	0.90	1.00	0.315	0.035	0.039
b	0.15		0.30	0.006		0.012
с	0.10		0.22	0.004		0.009
D	1.80	2.00	2.20	0.071	0.079	0.087
E	1.80	2.10	2.40	0.071	0.083	0.094
E1	1.15	1.25	1.35	0.045	0.049	0.053
е		0.65			0.025	
e1		1.30			0.051	
L	0.26	0.36	0.46	0.010	0.014	0.018
<	0°		8°			

4 Ordering information

Table 8. Order codes

Part number	Temperature range	Package	Packaging	Marking
TS331ILT	-40°C, +125°C	SOT23-5	Tape & reel	K506
TS331ICT	-40 0, +125 0	SC70-5	Tape & reel	K55

5

Table 9. Document revision history

Date	Revision	Changes
29-Mar-2010	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

