FEATURES

Single power supply
500 ps propagation delay input to output
125 ps overdrive dispersion
Differential PECL/LVPECL compatible outputs
Differential latch control
Internal latch pull-up resistors
Power supply rejection greater than 70 dB
700 ps minimum pulse width
Equivalent input rise time bandwidth > 750 MHz
Typical output rise/fall of $\mathbf{5 0 0}$ ps
Programmable hysteresis

APPLICATIONS

Automatic test equipment
High speed instrumentation
Scope and logic analyzer front ends
Window comparators
High speed line receivers
Threshold detection

Peak detection

High speed triggers
Patient diagnostics
Disk drive read channel detection
Hand-held test instruments
Zero-crossing detectors
Line receivers and signal restoration
Clock drivers

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

GENERAL DESCRIPTION

The ADCMP551/ADCMP552/ADCMP553 are single-supply, high speed comparators fabricated on Analog Devices' proprietary XFCB process. The devices feature a 500 ps propagation delay with less than 125 ps overdrive dispersion. Overdrive dispersion, a measure of the difference in propagation delay under differing overdrive conditions, is a particularly important characteristic of high speed comparators. A separate programmable hysteresis pin is available on the ADCMP552.

A differential input stage permits consistent propagation delay with a common-mode range from -0.2 V to VCCI -2.0 V . Outputs are complementary digital signals and are fully compatible with PECL and 3.3V LVPECL logic families. The outputs provide sufficient drive current to directly drive transmission lines terminated in 50Ω to VCCO - 2 V . A latch input is included and permits tracking, track-and-hold, or sample-and-hold modes of operation. The latch input pins contain internal pull-ups that set the latch in tracking mode when left open.

The ADCMP551/ADCMP552/ADCMP553 are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range. The ADCMP551 is available in a 16 -lead QSOP package; the ADCMP552 is available in a 20-lead QSOP package; and the ADCMP553 is available in an 8-lead MSOP package.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADCMP551/ADCMP552/ADCMP553

TABLE OF CONTENTS

Specifications

\qquad 3
Absolute Maximum Ratings 5
Thermal Considerations 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 8
Timing Information 10
Application Information 11
Clock Timing Recovery 11
Optimizing High Speed Performance 11
Comparator Propagation Delay Dispersion 11
Comparator Hysteresis 12
Minimum Input Slew Rate Requirement 12
Typical Application Circuits 13
Outline Dimensions 14
Ordering Guide 14

REVISION HISTORY

10/04—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CCI}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1. Electrical Characteristics

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
DC INPUT CHARACTERISTICS Input Voltage Range Input Differential Voltage Range Input Offset Voltage Input Offset Voltage Channel Matching Offset Voltage Tempco Input Bias Current Input Bias Current Tempco Input Offset Current Input Capacitance Input Resistance, Differential Mode Input Resistance, Common Mode Active Gain Common-Mode Rejection Ratio Hysteresis	$\Delta \mathrm{V}_{\mathrm{os}} / \mathrm{d}_{\mathrm{T}}$ In C_{IN} A_{v} CMRR	$\begin{aligned} & -\mathrm{IN}=0 \mathrm{~V},+\mathrm{IN}=0 \mathrm{~V} \\ & -\mathrm{IN}=-0.2 \mathrm{~V},+\mathrm{IN}=+1.3 \mathrm{~V} \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=-0.2 \mathrm{~V} \text { to }+1.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{HYS}}=\infty \end{aligned}$	$\begin{aligned} & -0.2 \\ & -3 \\ & -10.0 \\ & -28.0 \\ & -3.0 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 1.0 \\ & 2.0 \\ & -6.0 \\ & -5.0 \\ & \pm 1.0 \\ & 1.0 \\ & 1800 \\ & 1000 \\ & 60 \\ & 76 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & V_{\text {cll }}-2.0 \\ & +3 \\ & +10.0 \\ & +5.0 \\ & +3.0 \end{aligned}$	V mV mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $n A{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ pF $\mathrm{k} \Omega$ $\mathrm{k} \Omega$ dB dB mV
LATCH ENABLE CHARACTERISTICS Latch Enable Voltage Range Latch Enable Differential Voltage Range Latch Enable Input High Current Latch Enable Input Low Current LE Voltage, Open $\overline{\mathrm{LE}}$ Voltage, Open Latch Setup Time Latch Hold Time Latch to Output Delay Latch Minimum Pulse Width	ts t_{H} tploh, tplol t_{PL}	@ $\mathrm{V}_{\mathrm{cc}}-0.8 \mathrm{~V}$ @ Vcci-1.8V Latch inputs not connected Latch inputs not connected $\begin{aligned} & V_{O D}=250 \mathrm{mV} \\ & V_{O D}=250 \mathrm{mV} \\ & V_{O D}=250 \mathrm{mV} \\ & V_{O D}=250 \mathrm{mV} \end{aligned}$	$\begin{aligned} & V_{\text {ccI }}-1.8 \\ & 0.4 \\ & -150 \\ & -150 \\ & V_{\text {clI }}-0.15 \\ & V_{\text {ccI }} / 2-0.075 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 450 \\ & 700 \end{aligned}$	$\begin{aligned} & V_{\text {ccI }}-0.8 \\ & 1.0 \\ & +150 \\ & +150 \\ & V_{\text {CCI }} \\ & V_{\text {cCI }} / 2+0.075 \end{aligned}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ V V ps ps ps ps
DC OUTPUT CHARACTERISTICS Output Voltage—High Level Output Voltage—Low Level	$\begin{aligned} & \text { Vor } \\ & \text { VoL } \end{aligned}$	$\begin{aligned} & \mathrm{PECL} 50 \Omega \text { to } \mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V} \\ & \mathrm{PECL} 50 \Omega \text { to } \mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{\text {ссо }}-1.15 \\ & V_{\text {ссо }}-2.00 \end{aligned}$		$\begin{aligned} & V_{\text {сco }}-0.78 \\ & V_{\text {сco }}-1.54 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
AC OUTPUT CHARACTERISTICS Rise Time Fall Time		$\begin{aligned} & 10 \% \text { to } 90 \% \\ & 10 \% \text { to } 90 \% \end{aligned}$		$\begin{aligned} & 510 \\ & 490 \end{aligned}$		$\begin{aligned} & \text { ps } \\ & \text { ps } \end{aligned}$
AC OUTPUT CHARACTERISTICS (ADCMP553) Rise Time Fall Time		$\begin{aligned} & 10 \% \text { to } 90 \% \\ & 10 \% \text { to } 90 \% \end{aligned}$		$\begin{aligned} & 440 \\ & 410 \end{aligned}$		
AC PERFORMANCE Propagation Delay Propagation Delay Tempco Prop Delay Skew-Rising Transition to Falling Transition Within Device Propagation Delay Skew-Channel-to-Channel Overdrive Dispersion Overdrive Dispersion Slew Rate Dispersion Pulse Width Dispersion Duty Cycle Dispersion Common-Mode Voltage Dispersion	tpD $\Delta t_{p p} / d_{T}$	$\begin{aligned} & V_{O D}=1 \mathrm{~V} \\ & \mathrm{~V}_{O D}=20 \mathrm{mV} \\ & \mathrm{~V}_{O D}=1 \mathrm{~V} \\ & \mathrm{~V}_{O D}=1 \mathrm{~V} \\ & \\ & \mathrm{~V}_{O D}=1 \mathrm{~V} \\ & \\ & 20 \mathrm{mV} \leq \mathrm{V}_{\mathrm{OD}} \leq 100 \mathrm{mV} \\ & 50 \mathrm{mV} \leq \mathrm{V}_{\mathrm{OD}} \leq 1.0 \mathrm{~V} \\ & 0.4 \mathrm{~V} / \mathrm{ns} \leq \mathrm{SR} \leq 1.33 \mathrm{~V} / \mathrm{ns} \\ & 700 \mathrm{ps} \leq \mathrm{PW} \leq 10 \mathrm{~ns} \\ & 33 \mathrm{MHz}, 1 \mathrm{~V} / \mathrm{ns}, \mathrm{~V}_{C M}=0.5 \mathrm{~V} \\ & 1 \mathrm{~V} \text { swing, } 0.3 \mathrm{~V} \leq \mathrm{V}_{C M} \leq 0.8 \mathrm{~V} \\ & \hline \end{aligned}$		500 625 0.25 35 35 75 75 75 25 10 10		ps ps $\mathrm{ps} /{ }^{\circ} \mathrm{C}$ ps ps ps ps ps ps ps ps

ADCMP551/ADCMP552/ADCMP553

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
AC PERFORMANCE (continued) Equivalent Input Rise Time Bandwidth ${ }^{1}$ Maximum Toggle Rate Minimum Pulse Width RMS Random Jitter Unit-to-Unit Propagation Delay Skew	$B W_{E Q}$ $\mathrm{PW}_{\text {Min }}$	0 V to 1 V swing, $2 \mathrm{~V} / \mathrm{ns}$ $>50 \%$ output swing $\Delta \mathrm{t}_{\mathrm{PD}}<25 \mathrm{ps}$ $\mathrm{V}_{\mathrm{OD}}=250 \mathrm{mV}, 1.3 \mathrm{~V} / \mathrm{ns}$, $500 \mathrm{MHz}, 50 \%$ duty cycle		$\begin{aligned} & 750 \\ & 800 \\ & 700 \\ & 1.1 \\ & 50 \end{aligned}$		MHz MHz ps ps ps
POWER SUPPLY (ADCMP551/ADCMP552) Input Supply Current Output Supply Current Output Supply Current Input Supply Voltage Output Supply Voltage Positive Supply Differential Power Dissipation Power Dissipation DC Power Supply Rejection Ratio—— $\mathrm{V}_{\text {ccı }}$ DC Power Supply Rejection Ratio-V ${ }_{\text {cco }}$	Ivcci Ivcco Vccı Vcco $V_{\text {cco }}-V_{\text {ccl }}$ P_{D} PSRRyccı PSRRvcco	@ 3.3 V @ 3.3 V without load @ 3.3 V with load Dual Dual Dual, without load Dual, with load	$\begin{aligned} & 8 \\ & 3 \\ & 40 \\ & 3.135 \\ & 3.135 \\ & -0.2 \\ & 40 \\ & 90 \end{aligned}$	$\begin{aligned} & 12 \\ & 5 \\ & 55 \\ & 3.3 \\ & 3.3 \\ & \\ & 55 \\ & 110 \\ & 75 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 9 \\ & 70 \\ & 5.25 \\ & 5.25 \\ & +2.3 \\ & 75 \\ & 130 \end{aligned}$	mA mA mA V V V mW mW dB dB
POWER SUPPLY (ADCMP553) Positive Supply Current Positive Supply Current Positive Supply Voltage Power Dissipation Power Dissipation DC Power Supply Rejection Ratio- $\mathrm{V}_{\text {cc }}$	Ivce $V_{c c}$ PD PSRRycc	@ 3.3 V without load @ 3.3 V with load Dual Dual, without load Dual, with load	3.135	$\begin{aligned} & 9 \\ & 35 \\ & 3.3 \\ & 30 \\ & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 13 \\ & 42 \\ & 5.25 \\ & 42 \\ & 75 \end{aligned}$	mA mA V mW mW dB
HYSTERESIS (ADCMP552 Only) Programmable Hysteresis			0		40	mV

${ }^{1}$ Equivalent input rise time bandwidth assumes a first order input response and is calculated by the following formula: BW EQ $=.22 / \sqrt{ }\left(\right.$ trcomp $\left.^{2}-\operatorname{trisin}^{2}\right)$, where $\operatorname{tr}_{\mathbb{N}_{\mathrm{N}}}$ is the 20/80 input transition time applied to the comparator and trcomp is the effective transition time as digitized by the comparator input.

ADCMP551/ADCMP552/ADCMP553

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltages	
\quad Input Supply Voltage (V ${ }_{\text {cli }}$ to GND)	-0.5 V to +6.0 V
\quad Output Supply Voltage (Vcco to GND)	-0.5 V to +6.0 V
Ground Voltage Differential	-0.5 V to +0.5 V
Input Voltages	
\quad Input Common-Mode Voltage	-0.5 V to +3.5 V
\quad Differential Input Voltage	-4.0 V to +4.0 V
\quad Input Voltage, Latch Controls	-0.5 V to +5.5 V
Output	30 mA
\quad Output Current	
Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\quad Operating Temperature, Ambient	$125^{\circ} \mathrm{C}$
Operating Temperature, Junction	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CONSIDERATIONS

The ADCMP551 16-lead QSOP package has a θ_{JA} (junction-toambient thermal resistance) of $104^{\circ} \mathrm{C} / \mathrm{W}$ in still air.

The ADCMP552 20-lead QSOP package has a $\theta_{\text {JA }}$ (junction-toambient thermal resistance) of $80^{\circ} \mathrm{C} / \mathrm{W}$ in still air.

The ADCMP553 8-lead MSOP package has a $\theta_{\text {IA }}$ (junction-toambient thermal resistance) of $130^{\circ} \mathrm{C} / \mathrm{W}$ in still air.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADCMP551/ADCMP552/ADCMP553

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. ADCMP551 16-Lead QSOP Pin Configuration

Figure 3. ADCMP552 20-Lead QSOP
Pin Configuration

Figure 4. ADCMP553 8-Lead MSOP Pin Configuration

Table 3. Pin Function Descriptions

Pin No.			Mnemonic	Function
ADCMP551	ADCMP552	ADCMP553		
3,14	1, 4, 17, 20		V cco	Logic Supply Terminal.
1	2	6	QA	One of Two Complementary Outputs for Channel A. QA is logic high if the analog voltage at the noninverting input is greater than the analog voltage at the inverting input (provided the comparator is in the compare mode). See the description of Pin LEA for more information.
2	3	5	$\overline{\mathrm{QA}}$	One of Two Complementary Outputs for Channel A. $\overline{\mathrm{QA}}$ is logic low if the analog voltage at the noninverting input is greater than the analog voltage at the inverting input (provided the comparator is in the compare mode). See the description of Pin LEA for more information.
4	5	2	LEA	One of Two Complementary Outputs for Channel A Latch Enable. In the compare mode (logic high), the output tracks changes at the input of the comparator. In the latch mode (logic low), the output reflects the input state just prior to the comparator's being placed in the latch mode. $\overline{\text { LEA }}$ must be driven in conjunction with LEA.
5	6	1	$\overline{\text { LEA }}$	One of Two Complementary Outputs for Channel A Latch Enable. In the compare mode (logic high), the output tracks changes at the input of the comparator. In the latch mode (logic low), the output reflects the input state just prior to the comparator's being placed in the latch mode. LEA must be driven in conjunction with $\overline{\mathrm{LEA}}$.
6	7		V ${ }_{\text {cI }}$	Input Supply Terminal.
7	8	4	-INA	Inverting Analog Input of the Differential Input Stage for Channel A. The inverting A input must be driven in conjunction with the noninverting A input.
8	9	3	+INA	Noninverting Analog Input of the Differential Input Stage for Channel A. The noninverting A input must be driven in conjunction with the inverting A input.
	10		HYSA	Programmable Hysteresis.
	11		HYSB	Programmable Hysteresis.
9	12		+INB	Noninverting Analog Input of the Differential Input Stage for Channel B. The noninverting B input must be driven in conjunction with the inverting B input.
10	13		-INB	Inverting Analog Input of the Differential Input Stage for Channel B. The inverting B input must be driven in conjunction with the noninverting B input.
11	14	8	AGND	Analog Ground.

ADCMP551/ADCMP552/ADCMP553

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Pin No.} \& \multirow[b]{2}{*}{Mnemonic} \& \multirow[b]{2}{*}{Function}

\hline ADCMP551 \& ADCMP552 \& ADCMP553 \& \&

\hline 12 \& 15 \& \& $\overline{\text { LEB }}$ \& One of Two Complementary Inputs for Channel B Latch Enable. In the compare mode (logic low), the output tracks changes at the input of the comparator. In the latch mode (logic high), the output reflects the input state just prior to the comparator's being placed in the latch mode. LEB must be driven in conjunction with $\overline{\text { LEB }}$.

\hline 13 \& 16 \& \& LEB \& One of Two Complementary Inputs for Channel B Latch Enable. In the compare mode (logic low), the output tracks changes at the input of the comparator. In the latch mode (logic high), the output reflects the input state just prior to the comparator's being placed in the latch mode. LEB must be driven in conjunction with $\overline{\text { LEB }}$.

\hline 15 \& 18 \& \& $\overline{\mathrm{QB}}$ \& One of Two Complementary Outputs for Channel $B . \overline{Q B}$ is logic low if the analog voltage at the noninverting input is greater than the analog voltage at the inverting input (provided the comparator is in the compare mode). See the description of Pin LEB for more information.

\hline 16 \& 19 \& 7 \& QB

Vcc \& | One of Two Complementary Outputs for Channel B. QB is logic high if the analog voltage at the noninverting input is greater than the analog voltage at the inverting input (provided the comparator is in the compare mode). See the description of Pin LEB for more information. |
| :--- |
| Positive Supply Terminal. |

\hline
\end{tabular}

ADCMP551/ADCMP552/ADCMP553

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CCI}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 5. Input Bias Current vs. Input Voltage

Figure 6. Input Offset Voltage vs. Temperature

Figure 7. ADCMP551/2 Rise/Fall Time vs. Temperature

Figure 8. Input Bias Current vs. Temperature

Figure 9. Rise and Fall of Outputs vs. Time

Figure 10. ADCMP553 Rise/Fall Time vs. Temperature

ADCMP551/ADCMP552/ADCMP553

Figure 11. Propagation Delay vs. Temperature

Figure 12. Propagation Delay vs. Overdrive Voltage

Figure 13. Comparator Hysteresis vs. RHrs

Figure 14. Propagation Delay vs. Common-Mode Voltage

Figure 15. Propagation Delay Error vs. Pulse Width

Figure 16. Comparator Hysteresis vs. IHYS

ADCMP551/ADCMP552/ADCMP553

TIMING INFORMATION

Figure 17. System Timing Diagram

Figure 17 shows the compare and latch features of the ADCMP55x family. Table 4 describes the terms in the diagram.

Table 4. Timing Descriptions

Symbol	Timing	Description
tpDH	Input to Output High Delay	Propagation delay measured from the time the input signal crosses the reference (\pm the input offset voltage) to the 50% point of an output low-to-high transition
$t_{\text {PDL }}$	Input to Output Low Delay	Propagation delay measured from the time the input signal crosses the reference $(\pm$ the input offset voltage) to the 50% point of an output high-to-low transition
tploh	Latch Enable to Output High Delay	Propagation delay measured from the 50% point of the latch enable signal low-to-high transition to the 50% point of an output low-to-high transition
tploL	Latch Enable to Output Low Delay	Propagation delay measured from the 50% point of the latch enable signal low-to-high transition to the 50% point of an output high-to-low transition
$\mathrm{tH}^{\text {}}$	Minimum Hold Time	Minimum time after the negative transition of the latch enable signal that the input signal must remain unchanged to be acquired and held at the outputs
$t_{\text {PL }}$	Minimum Latch Enable Pulse Width	Minimum time the latch enable signal must be high to acquire an input signal change
ts	Minimum Setup Time	Minimum time before the negative transition of the latch enable signal that an input signal change must be present to be acquired and held at the outputs
t_{R}	Output Rise Time	Amount of time required to transition from a low to a high output as measured at the 20% and 80% points
$\mathrm{t}_{\text {F }}$	Output Fall Time	Amount of time required to transition from a high to a low output as measured at the 20% and 80% points
Vod	Voltage Overdrive	Difference between the differential input and reference input voltages

APPLICATION INFORMATION

The comparators in the ADCMP55x series are very high speed devices. Consequently, high speed design techniques must be employed to achieve the best performance. The most critical aspect of any ADCMP55x design is the use of a low impedance ground plane. A ground plane, as part of a multilayer board, is recommended for proper high speed performance. Using a continuous conductive plane over the surface of the circuit board can create this, allowing breaks in the plane only for necessary signal paths. The ground plane provides a low inductance ground, eliminating any potential differences at different ground points throughout the circuit board caused by ground bounce. A proper ground plane also minimizes the effects of stray capacitance on the circuit board.

It is also important to provide bypass capacitors for the power supply in a high speed application. A $1 \mu \mathrm{~F}$ electrolytic bypass capacitor should be placed within 0.5 inches of each power supply pin to ground. These capacitors reduce any potential voltage ripples from the power supply. In addition, a 10 nF ceramic capacitor should be placed as close to the power supply pins as possible on the ADCMP55x to ground. These capacitors act as a charge reservoir for the device during high frequency switching.

The LATCH ENABLE input is active low (latched). If the latching function is not used, the LATCH ENABLE input pins may be left open. The internal pull-ups on the latch pins set the latch to transparent mode. If the latch is to be used, valid PECL voltages are required on the inputs for proper operation. The PECL voltages should be referenced to $V_{C C I}$.

Occasionally, one of the two comparator stages within the ADCMP551/ADCMP552 is not used. The inputs of the unused comparator should not be allowed to float. The high internal gain may cause the output to oscillate (possibly affecting the comparator that is being used) unless the output is forced into a fixed state. This is easily accomplished by ensuring that the two inputs are at least one diode drop apart, while also appropriately connecting the LATCH ENABLE and LATCH ENABLE inputs as described previously.

The best performance is achieved with the use of proper PECL terminations. The open-emitter outputs of the ADCMP55x are designed to be terminated through 50Ω resistors to $\mathrm{V}_{\text {CCo }}-2.0 \mathrm{~V}$ or any other equivalent PECL termination. If high speed PECL signals must be routed more than a centimeter, microstrip or stripline techniques may be required to ensure proper transition times and prevent output ringing.

CLOCK TIMING RECOVERY

Comparators are often used in digital systems to recover clock timing signals. High speed square waves transmitted over a distance, even tens of centimeters, can become distorted due to stray capacitance and inductance. Poor layout or improper termination can also cause reflections on the transmission line, further distorting the signal waveform. A high speed comparator can be used to recover the distorted waveform while maintaining a minimum of delay.

OPTIMIZING HIGH SPEED PERFORMANCE

As with any high speed comparator amplifier, proper design and layout techniques should be used to ensure optimal performance from the ADCMP55x. The performance limits of high speed circuitry can easily be a result of stray capacitance, improper ground impedance, or other layout issues.

Minimizing resistance from source to the input is an important consideration in maximizing the high speed operation of the ADCMP55x. Source resistance in combination with equivalent input capacitance can cause a lagged response at the input, thus delaying the output. The input capacitance of the ADCMP55x, in combination with stray capacitance from an input pin to ground, could result in several picofarads of equivalent capacitance. A combination of $3 \mathrm{k} \Omega$ source resistance and 5 pF input capacitance yields a time constant of 15 ns , which is significantly slower than the 500 ps capability of the ADCMP55x. Source impedances should be significantly less than 100Ω for best performance.

Sockets should be avoided due to stray capacitance and inductance. If proper high speed techniques are used, the ADCMP55x should be free from oscillation when the comparator input signal passes through the switching threshold.

COMPARATOR PROPAGATION DELAY DISPERSION

The ADCMP55x has been specifically designed to reduce propagation delay dispersion over an input overdrive range of 20 mV to 1 V . Propagation delay overdrive dispersion is the change in propagation delay that results from a change in the degree of overdrive (how far the switching point is exceeded by the input). The overall result is a higher degree of timing accuracy since the ADCMP55x is far less sensitive to input variations than most comparator designs.

ADCMP551/ADCMP552/ADCMP553

Propagation delay dispersion is an important specification in critical timing applications such as ATE, bench instruments, and nuclear instrumentation. Overdrive dispersion is defined as the variation in propagation delay as the input overdrive conditions are changed (Figure 18). For the ADCMP55x, overdrive dispersion is typically 125 ps as the overdrive is changed from 20 mV to 1 V . This specification applies for both positive and negative overdrive since the ADCMP55x has equal delays for positive- and negative-going inputs.

Figure 18. Propagation Delay Dispersion

COMPARATOR HYSTERESIS

The addition of hysteresis to a comparator is often useful in a noisy environment or where it is not desirable for the comparator to toggle between states when the input signal is at the switching threshold. The transfer function for a comparator with hysteresis is shown in Figure 19. If the input voltage approaches the threshold from the negative direction, the comparator switches from a 0 to a 1 when the input crosses $+\mathrm{V}_{\mathrm{H}} / 2$. The new switching threshold becomes $-\mathrm{V}_{\mathrm{H}} / 2$. The comparator remains in a 1 state until the $-\mathrm{V}_{\mathrm{H}} / 2$ threshold is crossed coming from the positive direction. In this manner, noise centered on 0 V input does not cause the comparator to switch states unless it exceeds the region bounded by $\pm \mathrm{V}_{\mathrm{H}} / 2$.

Positive feedback from the output to the input is often used to produce hysteresis in a comparator (Figure 23). The major problem with this approach is that the amount of hysteresis varies with the output logic levels, resulting in a hysteresis that is not symmetrical around zero.

In the ADCMP552, hysteresis is generated through the programmable hysteresis pin. A resistor from the HYS pin to $\mathrm{V}_{\mathrm{CCI}}$ creates a current into the part that is used to generate hysteresis. Hysteresis generated in this manner is independent of output swing and is symmetrical around the trip point. The hysteresis versus resistance curve is shown in Figure 20.

A current source can also be used with the HYS pin. The relationship between the current applied to the HYS pin and the resulting hysteresis is shown in Figure 16.

Figure 19. Comparator Hysteresis Transfer Function

Figure 20. Comparator Hysteresis Transfer Function

MINIMUM INPUT SLEW RATE REQUIREMENT

As for all high speed comparators, a minimum slew rate must be met to ensure that the device does not oscillate when the input crosses the threshold. This oscillation is due in part to the high input bandwidth of the comparator and the parasitics of the package. Analog Devices recommends a slew rate of $1 \mathrm{~V} / \mu \mathrm{s}$ or faster to ensure a clean output transition. If slew rates less than $1 \mathrm{~V} / \mu \mathrm{s}$ are used, hysteresis should be added to reduce the oscillation.

ADCMP551/ADCMP552/ADCMP553

TYPICAL APPLICATION CIRCUITS

Figure 21. High Speed Sampling Circuits

Figure 22. High Speed Window Comparator

Figure 23. Adding Hysteresis Using the HYS Control Pin

Figure 24. How to Interface a PECL Output to an Instrument with a 50Ω to Ground Input

ADCMP551/ADCMP552/ADCMP553

OUTLINE DIMENSIONS

Figure 25. 20-Lead Shrink Small Outline Package [QSOP]
(RQ-20)
Dimensions shown in inches

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADCMP551BRQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead QSOP	$\mathrm{RQ}-16$	
ADCMP552BRQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 -Lead QSOP	RQ-20	
ADCMP553BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	
EVAL-ADCMP551BRQ		EVALUATION BOARD		
EVAL-ADCMP552BRQ		EVALUATION BOARD		

ADCMP551/ADCMP552/ADCMP553

NOTES

ADCMP551/ADCMP552/ADCMP553

NOTES

