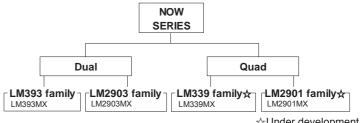


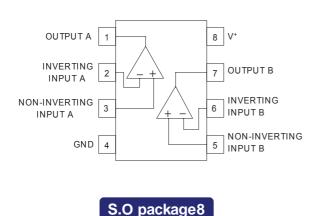
NOW SERIES


Universal Standard Ground Sense Comparator

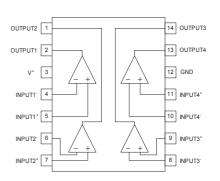
LM393 family, LM339 family, LM2903 family, LM2901 family

Description

The Universal Standard family LM393/ LM339/LM2903/LM2901 monolithic ICs integrate two/four independent comparators on a single chip and feature high gain, low power consumption, and an operating voltage range from 2[V] to 36[V] (single power supply).


☆Under development

Characteristics


- 1) Operating temperature range Commercial Grade LM339/393 family: 0[°C] to +70[°C] Extended Industrial Grade LM2903/2901 family: -40[°C] to +125[°C]
- 2)Open collector output
- 3)Single / dual power supply compatible
- 4)Low supply current
 - 0.8[mA] typ. (LM2901/339 family) 0.4[mA] typ. (LM2903/393 family)

- 5) Low input-bias current: 25[nA] typ.
- 6) Low input-offset current: 5[nA] typ
- 7) Input common-mode voltage range, including ground
- 8) Differential input voltage range equal to maximum rated supply voltage
- 9) Low output saturation voltage
- 10) TTL,MOS,CMOS compatible output

Pin Assignment

LM393MX LM2903MX

☆Under development

S.O package14

LM339MX LM2901MX ● Absolute Maximum Ratings (Ta=25°C)

		Rating							
Parameter	Symbol	LM393 family	LM339 family☆	LM2903 family☆	LM2901 family	Unit			
Supply Voltage	V⁺-GND		+36						
Input Differential Voltage	Vid		±36						
Common-mode Input Voltage	Vicm	-0.3 to +36							
Operating Temperature Range	Topr	0 to +70 -40 to +125							
Storage Temperature Range	Tstg	-65 to +150							
Maximum Junction Temperature	Tjmax	+150							

☆Under development

		Temperature			Lir	nit					
Parameter	Symbol		LM393 family			LM339 family☆			Unit	Condition	Fig.No
		range	Min.	Тур.	Max.	Min.	Тур.	Max.			
Input Offset Voltage (*1)	VIO	25℃	_	1	7	_	2	7	mV	V ⁺ =5 to 30[V],VO=1.4[V], RS=0[Ω]	2
	VIO	Full range	-	_	9	-	_	15	IIIV	VCM=0[V] to V ⁺ -1.5[V]	
Input Bias Voltage (*1)	IIB	25℃	_	25	250	_	25	250	nA	IIN(+) or IIN(-)	2
	IID	Full range	-	-	400	-	-	400	IIA	VCM=0[V]	
Input Offset Current (*1)	IIO	25°C	_	5	50	_	5	50	nA	IIN(+)-IIN(-),VCM=0[V]	2
	110	Full range	-	_	150	_	_	150	IIA		2
Input Common-mode Voltage Range	VICR	25℃	0	_	V ⁺ -1.5	-	_	V⁺-1.5	V	V ⁺ =30[V]	2
ronago riango	VICK	Full range	0	-	V ⁺ -2.0	-	-	V*-2.0	V	V -30[V]	۷
Supply Current	ICC	25℃	_	0.4	1	_	0.8	2.0	mA	RL=∞,V ⁺ =5[V]	3
	ICC	25 C	_	1	2.5	_	1.0	2.5	IIIA	RL=∞,V ⁺ =36[V]	3
Large Signal Voltage Gain	AVD	25℃	25	200	_	25	100	_	V/mV	$V^{+}=15[V],VO=1[V] \text{ to } 11[V]$ RL\ge 15[k\Oealign]	2
Large Signal Response Time	tREL	25℃	-	300	_	-	300	_	ns	VIN=TTL logic swing, Vref=1.4[V] VRL=5[V],RL=5.1[kΩ]	3
Response Time	tRE	25℃	1.5			_	1.3	_	μS	VRL=5[V],RL=5.1[kΩ] VIN=100[mVp-p] overdrive=5[mV]	3
Output Sink Current	ISINK	25℃	6	16	_	6	16	_	mA	VIN(-)=1[V],VIN(+)=0[V] VO≦1.5[V]	3
Output Saturation Voltage	VOL	25℃	-	250	400	-	250	400		VIN(-)=1[V],VIN(+)=0[V]	
vollage	VOL	Full range	-	_	700	1	-	700	mV	ISINK≦4[mA]	3
Output Leakage Current		25℃		0.1	_	-	0.1	-	nA	VIN(-)=0[V],VIN(+)=1[V], VO=5[V]	3
	IOH	Full range	-			_	_	1.0	μΑ		
Differential Input Voltage	VID	Full range	-	_	36	_	_	36	V	ALL VIN≧0[V]	_

(*1) Absolute value ☆Under development

$\bigcirc LM2903/2901 \text{ family(Unless otherwise specified, V$^+$=$+5[V])}$

					Lir	nit					
Parameter	Symbol	Temperature range	LM2903 family			LM2901 family☆			Unit	Condition	Fig.No.
		range	Min.	Тур.	Max.	Min.	Тур.	Max.			
Input Offset Voltage (*2)	\/IO	25℃	-	2	7	-	2	7		V ⁺ =30[V],VO=1.4[V], RS=0[Ω]	
	VIO	Full range	-	9	15	-	9	15	mV	VCM=0[V] to V ⁺ -1.5[V]	2
Input Bias Current(*2)	IID	25°C	-	25	250	-	25	250	n ^	IIN(+) or IIN(-)	2
	IIB	Full range	-	200	500	_	200	500	nA	VCM=0[V]	2
Input Offset Current (*2)	IIO	25°C	-	5	50	-	5	50	n ^	HNI/ I NINI/) V/CMI—OD/I	2
	IIO	Full range	-	50	200	-	50	200	nA	IIN(+)-IIN(-),VCM=0[V]	2
Input Common-mode Voltage Range	VICR	25°C	-	-	V ⁺ -1.5	_	-	V ⁺ -1.5	V	V ⁺ =30[V]	2
voltage range	VICK	Full range	-	-	V ⁺ -2.0	_	-	V ⁺ -2.0	V		2
Supply Current	ICC	3F°C	-	0.4	1	_	0.8	2	^	RL=∞,V ⁺ =5[V]	3
	ICC	25℃	-	1	2.5	-	1	2.5	mA	RL=∞,V ⁺ =36[V]	
Voltage Gain	AVD	25℃	25	100	_	25	100	_	V/mV	$V^{+}=15[V],VO=1[V] \text{ to } 11[V],$ RL\ge 15[k\O]	2
Large Signal Response Time	tREL	25℃	_	300	_	_	300	_	ns	VIN=TTL logic swing, Vref=1.4[V] VRL=5[V],RL=5.1[kΩ]	3
Response Time	tRE	25℃	_	1.5	_	_	1.3	_	μs	VRL=5[V],RL=5.1[kΩ] VIN=100[mVp-p], overdrive=5[mV]	3
Output Sink Current	ISINK	25℃	6	16	_	6	16	_	mA	VIN(-)=1[V],VIN(+)=0[V] VO≦1.5[V]	3
Saturation Voltage	VOL	25°C	-	250	400	-	250	400	\/	VIN(-)=1[V],VIN(+)=0[V]	3
	VOL	Full range	-	400	700	_	_	700	mV	ISINK≦4[mA]	3
Output Leakage Current	llaal	25℃	_	0.1	_	_	0.1	_	nA	VIN(-)=0[V],VIN(+)=1[V],V O=5[V]	2
	lleak	Full range	-	_	1	-	_	1	μΑ	VIN(-)=0[V],VIN(+)=1[V], VO=30[V]	3
Differential Input Voltage	VID	Full range	_	_	36	_	_	36	V	ALL VIN≧0[V]	_

Circuit Diagram

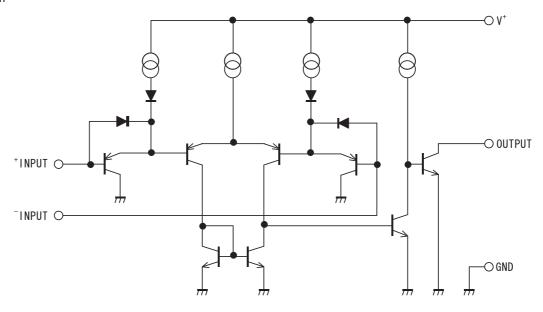


Fig.1 Circuit Diagram (each Comparator)

Measurement circuit 1 NULL Method measurement condition

V⁺,GND,EK,VICR unit : [V]

Parameter	\/F	VF S1 S2		S2 S3		LM393/LM339 family				LM2903/LM2901 family			
Farameter	VF	31	52	53	V ⁺	GND	EK	VICR	V ⁺	GND	EK	VICR	Calculation
Input Offset Voltage	VF1	ON	ON	ON	5 to 30	0	-1.4	0	5 to 30	0	-1.4	0	1
Input Offset Current	VF2	OFF	OFF	ON	5	0	-1.4	0	5	0	-1.4	0	2
Input Bias Current	VF3	OFF	ON	ON	5	0	-1.4	0	5	0	-1.4	0	3
	VF4	ON	OFF	ON	5	0	-1.4	0	5	0	-1.4	0	3
Voltage Gain	VF5	ON	ON	ON	15	0	-1.4	0	15	0	-1.4	0	4
	VF6 ON	ON	ON C	ON	15	0	-11.4	0	15	0	-11.4	0	4

- Calculation -

1.Input offset voltage (VIO)

$$Vio = \frac{|VF1|}{1+ Rf/Rs} [V]$$

2.Input offset current (IIO)

$$Iio = \frac{|VF2 - VF1|}{Ri(1+ Rf / Rs)}[A]$$

3.Input bias current (IIb)

$$Ib = \frac{|VF4 - VF3|}{2 \times Ri(1 + Rf / Rs)} [A]$$

4. Voltage gain (AVD)

AV = 20× Log
$$\frac{10× (1+ Rf/Rs)}{|VF6-VF5|}$$
 [dB]

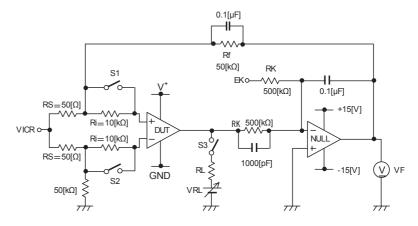


Fig.2 Measurement Circuit1 (each Comparator)

SW No.		SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7
Supply Current	_	OFF						
Output Sink Current	VOL=1.5[V]	OFF	ON	ON	OFF	ON	ON	OFF
Saturation Voltage	IOL=4[mA]	OFF	ON	ON	OFF	OFF	OFF	ON
Output Leakage Current	VOH=36[V]	OFF	ON	ON	OFF	OFF	OFF	ON
Response Time	RL=5.1[kΩ] VRL=5[V]	ON	OFF	ON	ON	OFF	ON	OFF

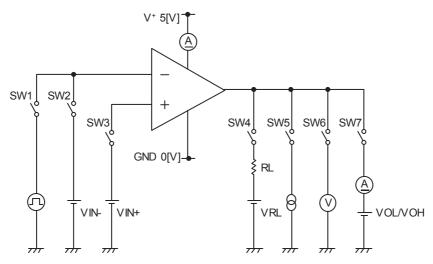


Fig.3 Measurement Circuit 2 (each Comparator)

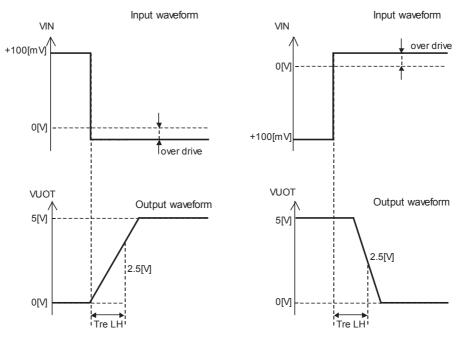


Fig.4 Response Time

Description of electrical characteristics

Described below are descriptions of the relevant electrical terms.

Please note that item names, symbols, and their meanings may differ from those on another manufacturer's documents.

1. Absolute maximum ratings

The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components.

1.1 Power supply voltage (V⁺/GND)

Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry.

1.2 Differential input voltage (VID)

Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.

1.3 Input common-mode voltage range (VICR)

Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead.

1.4 Operating temperature range and storage temperature range (Topr,Tstg)

The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.

1.5 Power dissipation (Pd)

Indicates the power that can be consumed by a particular mounted board at ambient temperature (25°C). For packaged products, Pd is determined by maximum junction temperature and the thermal resistance.

2. Electrical characteristics

2.1 Input offset voltage (VIO)

Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0V.

2.2 Input offset current (IIO)

Indicates the difference of the input bias current between the non-inverting and inverting terminals.

2.3 Input bias current (IIB)

Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal.

2.4 Input common-mode voltage range (VICR)

Indicates the input voltage range under which the IC operates normally.

2.5 Large signal voltage gain (AVD)

The amplifying rate (gain) of the output voltage against the voltage difference between the non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.

AVD = (output voltage fluctuation) / (input offset fluctuation)

2.6 Circuit current (ICC)

Indicates the current of the IC itself that flows under specific conditions and during no-load steady state.

2.7 Output sink current (IOL)

Denotes the maximum current that can be output under specific output conditions.

2.8 Output saturation voltage low level output voltage (VOL)

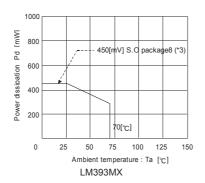
Signifies the voltage range that can be output under specific output conditions.

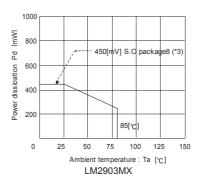
2.9 Output leakage current (ILeak)

Indicates the current that flows into the IC under specific input and output conditions.

2.10 Response time (tre)

The interval between the application of input and output conditions.


2.11 Common-mode rejection ratio (CMRR)


Denotes the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change of input common-mode voltage) / (input offset fluctuation)

2.12 Power supply rejection ratio (PSRR)

Signifies the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation). PSRR = (change in power supply voltage) / (input offset fluctuation)

Derating Curves

Power Dissipation

Package	Pd[W]	θ ja [°C/W]		
S.O Package8 (*3)	450	3.6		

 θ ja = (Tj-Ta)/Pd[°C/W]

Fig.5 Derating Curves

Precautions

1) Unused circuits

When there are unused circuits it is recommended that they be connected as in Fig. 6, setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICR).

2) Input terminal voltage

Applying GND + 36V to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics.

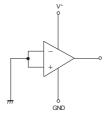


Fig.6 Disable circuit example

3) Power supply (single / dual)

The op-amp operates when the specified voltage supplied is between V* and GND. Therefore, the single supply op-amp can be used as a dual supply op-amp as well.

4) Power dissipation Pd

Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information.

5) Short-circuit between pins and erroneous mounting

Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and the power supply, or the output and GND may result in IC destruction.

6) Terminal short-circuits

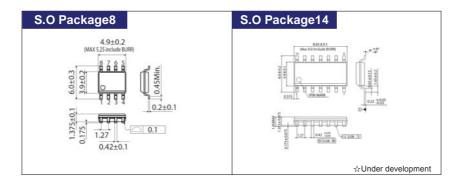
When the output and V⁺ terminals are shorted, excessive output current may flow, resulting in undue heat generation and, subsequently, destruction.

7) Operation in a strong electromagnetic field

Operation in a strong electromagnetic field may cause malfunctions.

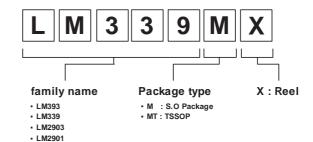
8) Radiation

This IC is not designed to withstand radiation.


9) IC handing

Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to piezoelectric (piezo) effects.

10) Board inspection


Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage.

External Dimensions

●Part Number Explanation

- \cdot Specify the product by the model number when placing orders.
- · Verify that the entire part number is correct.
- Start with the leftmost space without leaving any empty space between characters.

Tape	Embossed carrier tane								
Tape	EIIIDOSSEG	Embossed carrier tape							
Quantity	2500pcs								
Direction of feed	Pin 1 is at the upper left holding the reel with the left hand while pulling the tape out with the right								
0 1234	Reel	Pin 1	Direction of feed						
		VDI	multiples of the minimum package guan						

 $\ensuremath{\ensuremath{\mathbb{X}}}$ Please order in multiples of the minimum package quantity.