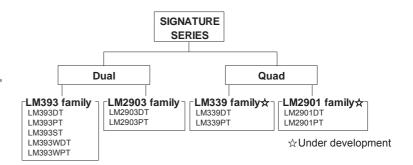


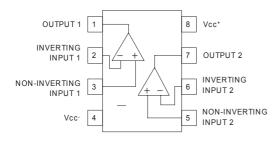
SIGNATURE SERIES


Universal Standard Ground sense Comparator

LM393 family, LM339 family, LM2903 family, LM2901 family

Description

The Universal Standard LM393/LM339/ LM2903/LM2901 family monolithic ICs integrate two/four independent comparator circuits on a single chip and feature high gain, low power consumption, and an operating voltage range between 2[V] and 36[V] (single power supply).



Characteristics

- 1) Operating temperature range Commercial Grade LM339/393 family: 0[°C] to +70[°C] **Extended Industrial Grade** LM2903/2901 family: -40[°C] to +125[°C]
- 2) Open collector output stage
- 3) Single / dual power supply compatible
- 4) Low supply current 0.4[mA] typ. (LM2903/393 family) 1.1[mA] typ. (LM2901/339 family)

- 5) Low supply current: 25[nA] typ
- 6) Low input offset current: 5[nA] typ
- 7) Common-mode input voltage range includes ground
- 8) Differential input voltage is possible to apply the absolute maximum ratings \pm 36[V].
- 9) Low output saturation voltage
- 10) TTL, MOS, CMOS compatible output

Pin Assignment

14 OUTPUT 3 13 OUTPUT 4 OUTPUT 1 2 Vcc⁺ 3 11 NON-INVERTING INVERTING 4 10 INVERTING INPUT 4 INVERTING 6 9 NON-INVERTING INPUT 3 ☆Under development

SO package8

LM393DT LM393WDT LM2903DT

TSSOP8

LM393PT LM393WPT I M2903PT

Mini SO8

LM393ST

SO package14

LM339DT LM2901DT

TSSOP14

LM339PT LM2901PT ● Absolute Maximum Ratings (Ta=25°C)

		Rating							
Parameter	Symbol	LM393 family	LM339 family☆	LM2903 family	LM2901 family☆	Unit			
Supply Voltage	Vcc ⁺ -Vcc ⁻		+36						
Differential Input Voltage	Vid	±36							
Common-mode Input Voltage Range	Vicm		-0.3 to +36						
Operating Temperature Range	Topr	0 to +70 -40 to +125							
Storage Temperature Range	Tstg	-65 to +150							
Maximum Junction Temperature	Tjmax		+150						

☆Under development

Electric Characteristics

OLM393/339 family(Unless otherwise specified, Vcc+=+5[V])

			Limit							ļ		
Parameter	Symbol	Temperature range	LM393 family			LM	1339 famil	у☆	Unit	Condition	Fig.No.	
		rango	Min.	Тур.	Max.	Min.	Тур.	Max.				
Input Offset Voltage (*1)	VIO	25°C	_	1	7	_	1	7	mV	Vcc ⁺ =5 to 30[V], VO=1.4[V],	2	
	VIO	full range	_	_	9	_	_	9	IIIV	Vicm=0 to -1.5[V]	2	
Input Offset Current (*1)	IIO	25°C	_	5	50	_	5	50		VO=1.4[V]	2	
	110	full range	_	_	150	_	_	150	nA	VO=1.4[V]	2	
Input Bias Current (*1)	IIB	25°C	_	25	250	_	25	250	- ^	VO=1.4D/I	2	
	IID	full range	_	_	400	_	_	400	nA	VO=1.4[V]	2	
Large Signal Voltage Gain	AVD	25℃	25	200	_	25	200	_	V/mV	$Vcc^{+}=15[V],VO=1 \text{ to } 11[V],$ RL=15[k\Omega]	2	
Supply Current (All Comparators)		25°C	_	0.4	1	_	1.1	2		Vcc⁺=5V,no load	3	
	ICC	full range	_	1	2.5	_	1.3	2.5	mA	Vcc ⁺ =30[V],no load		
Input Common-mode Voltage Range		25℃	_	_	Vcc ⁺ -1.5	_	_	Vcc ⁺ -1.5				
Voltage Ivalige	VICM	full range	_	_	Vcc ⁺ -2.0	_	_	Vcc ⁺ -2.0	V	_	2	
Differential Input Voltage	VID	25℃	_	_	Vcc⁺	_	_	Vcc ⁺	V	-	_	
Low level Output Voltage	1/0/	25°C	_	250	400	_	250	400	.,	VID 40 0 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
Output voltage	VOL	full range	-	_	700	-	_	700	mV	VID=-1[V],Isink=4[mA]	3	
High level Output Current	1011	25°C	_	0.1	_	_	0.1	_	nA	Vcc ⁺ =30[V],VID=1[V]		
Output Current	IOH	full range	-	-	1	-	-	1	μΑ	VO=30[V]	3	
Output Sink Current	Isink	25°C	6	16	_	6	16	_	mA	VID=-1[V],VO=1.5[V]	3	
Small Single Response Time	tRE	25°0	-	1.3	_	-	1.3	_	μs	RL=5.1[k Ω], Vcc ⁺ =5[V] VIN=100[mVp-p], Overdrive=5[mV]	3	
Large Single Response Time	tREL	- 25°C	-	300	_	-	300	_	ns	RL=5.1[kΩ], Vcc ⁺ =5[V] VIN=TTL input, Vref=1.4[V]	3	

(*1) Absolute value

☆ Under development

○LM2903/2901 family(Unless otherwise specified, Vcc⁺=+5[V])

					Lin	nit					Fig.No.
Parameter	Symbol	Temperature range	LN	M2903 fan	nily	LM	2901 fami	ily☆	Unit	Condition	
		range	Min.	Тур.	Max.	Min.	Тур.	Max.			
Input Offset Voltage (*2)	VIO	25℃	-	2	7	-	1	7		Vcc ⁺ =5 to 30[V],VO=1.4[V]	
	VIO	full range	-	-	15	-	-	15	mV	Vicm=0 to -1.5[V]	2
Input Offset Current (*2)	110	25℃	-	5	50	-	5	50	- ^	VO-4 4D //	0
	IIO	full range	-	-	150	-	-	150	nA	VO=1.4[V]	2
Input Bias Current (*2)	IID.	25℃	-	25	250	-	25	250		VO 4 40 0	
	IIB	full range	_	-	400	_	-	400	nA	VO=1.4[V]	2
Large Signal Voltage Gain	AVD	25℃	25	200	_	25	200	_	V/mV	$Vcc^{+}=15[V],VO=1 \text{ to } 11[V],$ RL=15[k\Omega]	2
Supply Current (All Comparators)		25℃	_	0.4	1	_	1.1	2		Vcc ⁺ =5V,no load	
(All Comparators)	ICC	full range	_	1	2.5	_	1.3	2.5	mA	Vcc ⁺ =30[V],no load	3
Input Common-mode Voltage Range		25°C	-	_	Vcc ⁺ -1.5	-	-	Vcc ⁺ -1.5			
Voltage Range	VICM	full range	-	_	Vcc ⁺ -2.0	-	-	Vcc ⁺ -2.0	V	_	2
Differential Input Voltage	VID	25℃	_	_	Vcc ⁺	-	_	Vcc⁺	V	_	_
Low level Output Voltage	\/OI	25℃	-	250	400	-	250	400		MD 40 0 1-1-1 45 - A1	
Output voltage	VOL	full range	-	-	700	-	-	700	mV	VID=-1[V],Isink=4[mA]	3
High level Output Current	1.2.1	25℃	-	0.1	-	-	0.1	_	nA	Vcc ⁺ =30[V],VID=1[V]	
Output Ourient	Isink	full range	-	-	1	_	-	1	μΑ	VO=30[V]	3
Output Sink Current	IOL	25℃	6	16	-	6	16	_	mA	VID=-1[V],VO=1.5[V]	3
Small Single Response Time	tRE	25℃	_	1.3	_	_	1.3	_	μS	RL=5.1[k Ω], Vcc ⁺ =5[V] VIN=100[mVp-p], Overdrive=5[mV]	3
Large Single Response Time	tREL	25℃	_	_	1.0	_	_	1.0	μS	TTL input Vref=1.4[V] RL=5.1[kΩ] Output voltage at 95%	3

(*2) Absolute value

☆Under development

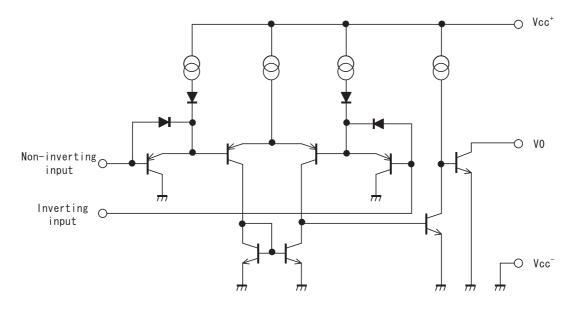


Fig.1 Circuit Diagram (each Comparator)

Measurement circuit 1 NULL Method measurement condition

Vcc⁺,Vcc⁻,EK,Vicm unit : [V]

Davanatas	\/_	04	S2	S3	LM393/LM339 family				LM2903/LM2901 family				Calaulatian
Parameter	VF	S1			Vcc⁺	Vcc	EK	Vicm	Vcc⁺	Vcc	EK	Vicm	Calculation
Input Offset Voltage	VF1	ON	ON	ON	5 to 30	0	-1.4	0	5 to 30	0	-1.4	0	1
Input Offset Current	VF2	OFF	OFF	ON	5	0	-1.4	0	5	0	-1.4	0	2
Input Bias Current	VF3	OFF	ON	ON	5	0	-1.4	0	5	0	-1.4	0	3
	VF4	ON	OFF	ON	5	0	-1.4	0	5	0	-1.4	0	3
Large Signal Voltage Gain	VF5	ON	ON	ON	15	0	-1.4	0	15	0	-1.4	0	4
	VF6	ON	ON	ON	15	0	-11.4	0	15	0	-11.4	0	4

- Calculation -

1.Input offset voltage (Vio)

$$Vio = \frac{|VF1|}{1+ Rf/Rs} [V]$$

2. Input offset current (lio)

$$Iio = \frac{|VF2 - VF1|}{Ri(1+ Rf / Rs)}[A]$$

3. Input bias current (lb)

$$Ib = \frac{|VF4 - VF3|}{2 \times Ri(1 + Rf / Rs)} [A]$$

4.Large signal voltage gain (Av)

AV = 20× Log
$$\frac{10× (1+ Rf/Rs)}{|VF6-VF5|}$$
 [dB]

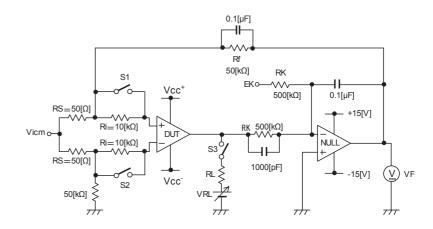


Fig.2 Measurement Circuit 1 (each Comparator)

Measurement Circuit 2: Switch Condition

SW No.		SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7
Supply Current	_	OFF						
Output Sink Current	VOL=1.5[V]	OFF	ON	ON	OFF	ON	ON	OFF
Saturation Voltage	IOL=4[mA]	OFF	ON	ON	OFF	OFF	OFF	ON
Output Leakage Current	VOH=36[V]	OFF	ON	ON	OFF	OFF	OFF	ON
Response Time	RL=5.1[kΩ] VRL=5[V]	ON	OFF	ON	ON	OFF	ON	OFF

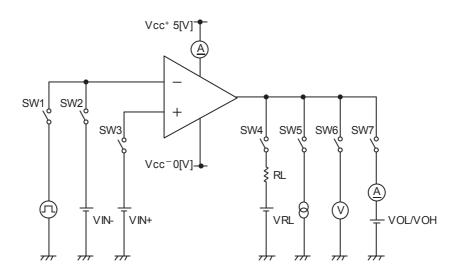


Fig.3 Measurement Circuit 2 (each Comparator)

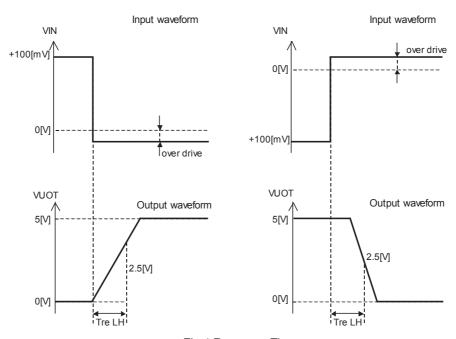


Fig.4 Response Time

Description of Electrical Characteristics

Described below are descriptions of the relevant electrical terms.

Please note that item names, symbols, and their meanings may differ from those on another manufacturer's documents.

1. Absolute maximum ratings

The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components.

1.1 Power supply voltage (Vcc⁺/Vcc)

Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry.

1.2 Differential input voltage (VID)

Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.

1.3 Input common-mode voltage range (VICM)

Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead.

1.4 Operating temperature range and storage temperature range (Topr,Tstg)

The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.

1.5 Power dissipation (Pd)

Indicates the power that can be consumed by a particular mounted board at ambient temperature (25° C). For packaged products, Pd is determined by the maximum junction temperature and the thermal resistance.

2. Electric characteristics

2.1 Input offset voltage (VIO)

Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0V.

2.2 Input offset current (IIO)

Indicates the difference of the input bias current between the non-inverting and inverting terminals.

2.3 Input bias current (IIB)

Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal.

2.4 Input common-mode voltage range(VICM)

Indicates the input voltage range under which the IC operates normally.

2.5 Large signal differential voltage gain (AVD)

The amplifying rate (gain) of the output voltage against the voltage difference between the non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.

AVD = (output voltage fluctuation) / (input offset fluctuation)

2.6 Supply current (ICC)

Indicates the current of the IC itself that flows under specific conditions and during no-load steady state.

2.7 Low level output current (IOL)

Denotes the maximum current that can be output under specific output conditions.

2.8 Low level output voltage (VOL)

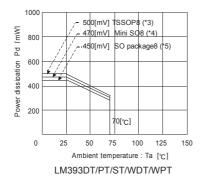
Signifies the voltage range that can be output under specific output conditions.

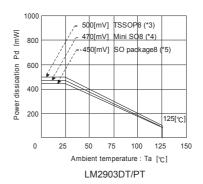
2.9 High level output current (IOH)

Indicates the current that flows into the IC under specific input and output conditions.

2.10 Response time (Tre)

The interval between the application of input and output conditions.


2.11 Common-mode rejection ratio (CMRR)


Denotes the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change in input common-mode voltage) / (input offset fluctuation)

2.12 Power supply rejection ratio (PSRR)

Signifies the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation).

PSRR = (change in power supply voltage) / (input offset fluctuation)

Power Dissipation

Package	Pd[W]	θ ja [°C/W]
SO Package8 (*5)	450	3.6
TSSOP8 (*3)	500	4.0
Mini SO8 (*4)	470	3.76

 θ ja = (Tj-Ta)/Pd[°C/W]

Fig.5 Derating Curve

Precautions

1) Unused circuits

When there are unused circuits it is recommended that they be connected as in Fig. 6, setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICM).

2) Input terminal voltage

Applying Vcc + 36[V] to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics.

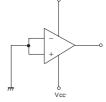


Fig.6 Disable circuit example

3) Power supply (single / dual)

The op-amp operates when the specified voltage supplied is between Vcc⁺ and Vcc⁻. Therefore, the single supply op-amp can be used as a dual supply op-amp as well.

4) Power dissipation Pd

Using the unit in excess of the rated power dissipation may cause deterioration in the electrical characteristics due to a rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information.

5) Short-circuit between pins and erroneous mounting

Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and the power supply, or the output and Vcc may result in IC destruction.

6) Terminal short-circuits

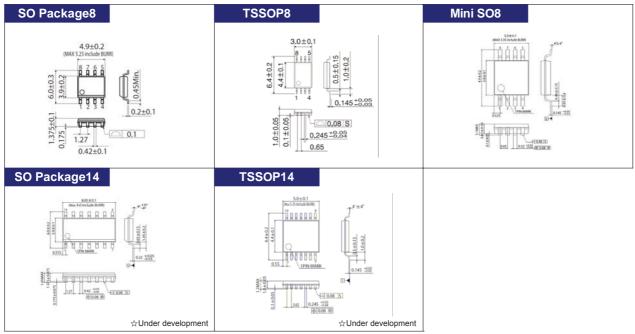
When output and Vcc* terminals are shorted, excessive output current may flow, resulting in undue heat generation and, subsequently, destruction.

7) Operation in a strong electromagnetic field

Operation in a strong electromagnetic field may cause malfunctions.

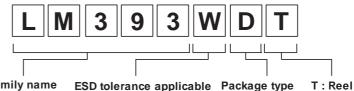
8) Radiation

This IC is not designed to withstand radiation.


9) IC handing

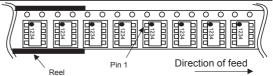
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to piezoelectric (piezo) effects.

10) Board inspection


Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage.

Dimensions

Part number explanation


- · Specify the product by the part number when placing orders.
- Verify that the entire part number is correct.
- · Start with the leftmost space without leaving any empty space between characters.

family name

- LM393
- LM339 - LM2903
- LM2901
- ESD tolerance applicable Package type • W : 2kV
 - D : SO Package
 P : TSSOP
- None : Normal - S : Mini SO

Таре	Embossed carrier tape
Quantity	2500pcs
Direction of feed	Pin 1 is at the upper left holding the reel with the left hand while pulling the tape out with the right

 $\ensuremath{\ensuremath{\%}}$ Please order in multiples of the minimum package quantity.