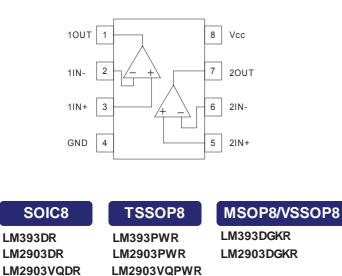
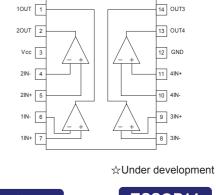

TROPHY SERIES

Universal Standard Ground Sense Comparator LM393 family, LM339 family, LM2903 family, LM2901 family

Description

The Universal Standard family LM393/LM339/ LM2903/LM2901 monolithic ICs integrate two/four independent comparators on a single chip and feature high gain, low power consumption, and an operating voltage range from 2[V] to 36[V] (single power supply).




Characteristics

- 1) Operating temperature range Commercial Grade LM339/393 family(0[°C] to +70[°C]) Extended Industrial Grade LM2903/2901 family: -40[°C] to +125[°C]
- 2) Open collector output
- 2) Open collector output
- 3) Single / dual power supply compatible
- 4) Low supply current 0.8[mA] typ. (LM393/339/2903/2901 family)

- 5) Low input-bias current : 25[nA] typ.
- 6) Low input-offset voltage: 2[mV] typ.
- 7) Differential input voltage range equal to maximum rating
- 8) Low output saturation voltage
- 9) TTL,MOS,CMOS compatible output

Pin Assignment

SOIC14

LM339DR LM2901DR LM2901VQDR TSSOP14

LM339PWR LM2901PWR LM2901VQPWR

ROHM CO., LTD.

These Products are designed and produced by ROHM.

Absolute Maximum Ratings (Ta=25°C)

		Rating							
Parameter	Symbol	LM393 family	LM339 family 🕁	LM2903 family	LM2901 family 🕁	Unit			
Supply Voltage	Vcc-GND		+	36		V			
Input Differential Voltage	Vid		±36						
Common-mode Input	Vicm	-0.3 to +36							
Operating Temperature	Topr	0 to +70 -40 to +125							
Storage Temperature Range	Tstg	-65 to +150							
Maximum Junction Temperature	Tj	+150							
					☆Under de	velopment			

Electric Characteristics

OLM393/339 family(Unless otherwise specified, Vcc=+5[V])

			Limit									
Parameter	Symbol	Temperature range	LM393 family			LM339 family☆			Unit	condition	Fig.No.	
		Tange	Min.	Тур.	Max.	Min.	Тур.	Max.				
Input Offset Voltage (*1)	VIO	25℃	-	2	7	-	2	7	mV	Vcc=5 to 30[V],VO=1.4[V]	2	
	VIO	Full range	-	-	9	-	_	9	IIIV	VIC=VIC(min)	2	
Input Offset Current (*1)	IIO	25℃	-	5	50	-	5	50	nA	VO=1.4[V]	2	
	10	Full range	-	-	250	-	-	150	ΠA	VO=1.4[V]	2	
Input Bias Current (*1)	IIB	25°C	-	25	250	-	25	250	nA	VO=1.4[V]	2	
	IID	Full range	-	-	400	_	-	400	ΠA	VO=1.4[V]	2	
Common-mode Input Voltage Range	VICR	25℃	_	_	Vcc-1.5	_	_	Vcc-1.5	V	_	2	
	VIOIC	Full range	-	_	Vcc-2.0	-	-	Vcc-2.0	v		2	
Large Signal Differential Voltage Amplification	AVD	25℃	25	200	_	25	200	_	V/mA	Vcc=15[V] VO=1.4 to 11.4[V], RL≧15[kΩ],VRL=15[V]	2	
High Level Output Current	1011	25℃	_	0.1	-	_	0.1	_	nA	VID=1[V],VO=5[V]	- 3	
ouput ourient	IOH	Full range	-	-	1	_	-	1	μA	VID=1[V],VO=30[V]		
Low Level Output Voltage	VOL	25℃	-	150	400	_	150	400			2	
Output voltage	VOL	Full range	-	-	700	_	_	700	mV	VID=-1[V],IOL=4[mA]	3	
Low Level Output Current	IOL	25℃	6	-	_	6	16	_	mA	VID=-1[V],VOL=1.5[V]	3	
Supply Current	100	25℃	-	0.8	1	_	0.8	2		RL=∞,Vcc=5V	0	
	ICC	Full range	-	-	2.5	_	_	_	mA	RL=∞,Vcc=30[V]	3	
Response Time	Tre	25℃	_	1.3	_	_	1.3	-	μs	RL=5.1[k Ω],VRL=5[V],CL=15pF VIN=100[mVp-p], overdrive=5[mV]	3	
	ne	200	-	0.3	_	_	0.3	_	μυ	$\label{eq:response} \begin{array}{l} RL{=}5.1[\mathrm{k}\Omega], VRL{=}5[\mathrm{V}],\\ CL{=}15\mathrm{pF}\\ VIN{=}TTL{-}Level\ input\ step\\ Vref{=}1.4[\mathrm{V}] \end{array}$	5	

(*1) Absolute value

☆Under development

TROPHY SERIES LM2903/2901/393/339 family

OLM2903/2901 family(Unless otherwise specified, Vcc=+5[V])

		Limit											
Parameter		Symbol	Temperature range	LM2903 family			LM	2901 fami	ly☆	Unit	Condition	Fig.No.	
			Tungo	Min.	Тур.	Max.	Min.	Тур.	Max.				
Input Offse	et Voltage (*2)	VIO	25°C	-	2	7	-	2	7	mV	Vcc=5 to MAX (*7), VO=1.4[V]	2	
		VIO	Full range	_	-	15	-	-	15	IIIV	VIC=VIC (min)	2	
Input Offse	et Current (*2)	IIO	25℃	_	5	50	_	5	50	nA	VO=1.4[V]	2	
		110	Full range	-	-	200	-	-	200	IIA	VO-1.4[V]	2	
Input Bias	Current (*2)	IIB	25°C	_	25	250	-	25	250	nA	VO=1.4[V]	2	
		IID	Full range	_	-	500	_	-	500	IIA	VO-1.4[V]	2	
Common-n Voltage Ra	node Input	VICR	25℃	_	-	Vcc-1.5	_	-	Vcc-1.5	V	_	2	
voltage i to	ligo		Full range	-	-	Vcc-2.0	-	-	Vcc-2.0				
Large Sign Voltage An	nal Differential nplification	AVD	25℃	25	100	_	25	100	_	V/mV	Vcc=15[V], VOUT=1.4 to 11.4[V], RL≧15[kΩ],VRL=15[V]	2	
High Level Output Cur		ЮН	25℃	I	0.1	_	I	0.1	_	nA	VID=1[V], VOH=5[V]	3	
	irent	IOH	Full range	I	_	1	Ι	-	1	μA	VID=1[V], VOH=MAX(*7)		
Low Level Output	LM2901(*3)		25°C	-	150	400	-	150	500				
Voltage	LM2901V(*3)	VOL	25°C	-	150	400	-	150	400	mV	VID=-1[V], IOL=4[mA]	3	
			Full range	-	_	700	-	-	700				
Low Level	Output Current	IOL	25℃	6	16	_	6	16	_	mA	VID=-1[V], VOL=1.5[V]	3	
Supply Cu	rrent	ICC	25℃	-	0.8	2	-	0.8	2		RL=∞,Vcc=5V	0	
			25 C	-	1	2.5	-	1	2.5	mA	RL=∞,Vcc=MAX(*7)	3	
Response	Time	Tre	25℃	-	1.3	-	-	1.3	_		RL=5.1[Ω],VRL=5[V], CL=15pF VIN=100[mVp-p], Overdrive=5[mV]	3	
	to voluo	IIe	200	_	0.3	_	_	0.3	_	μs	RL=5.1[kΩ],VRL=5[V], CL=15pF VIN=TTL-Level input step Vref=1.4[V]		

(*2) Absolute value

(*3) Supply Voltage Maximum Value LM2901DR, LM2901PWR MAX=30[V], LM2901VQDR, LM2901VQPWR MAX=32[V]

☆Under development

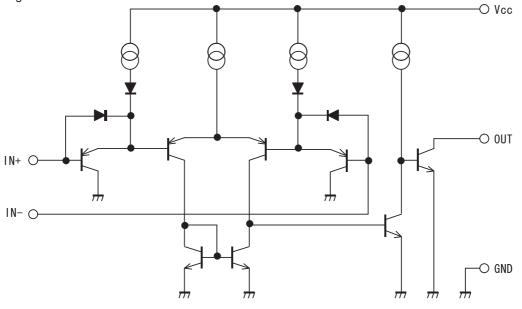


Fig.1 Circuit Diagram (each Comparator)

Measurement circuit 1 NULL Method measurement condition

Vcc,GND,EK,VICR Unit : [V]

Parameter			0.0	LN	1393/LN	1339 fan	nily	LM2903/LM2901 family				Calaviatian	
Parameter	VF	S1	52	S2 S3		GND	EK	VICR	Vcc	GND	EK	VICR	Calculation
Input Offset Voltage	VF1	ON	ON	ON	5 to 30	0	-1.4	0	5 to 30	0	-1.4	0	1
Input Offset Current	VF2	OFF	OFF	ON	5	0	-1.4	0	5	0	-1.4	0	2
Input Bias Current	VF3	OFF	ON	ON	5	0	-1.4	0	5	0	-1.4	0	3
	VF4	ON	OFF	ON	5	0	-1.4	0	5	0	-1.4	0	5
Large Signal Voltage Gain	VF5	ON	ON	ON	15	0	-1.4	0	15	0	-1.4	0	4
	VF6	ON	ON	ON	15	0	-11.4	0	15	0	-11.4	0	4

- Calculation -

1.Input offset voltage (VIO)

$$Vio = \frac{|VF1|}{1+ Rf/Rs} [V]$$

2.Input offset current (IIO)

$$Iio = \frac{|VF2 - VF1|}{Ri(1 + Rf / Rs)} [A]$$

3.Input bias current (IIb)

$$Ib = \frac{|VF4 - VF3|}{2 \times Ri(1 + Rf / Rs)} [A]$$

4.Large signal differential voltage gain (AVD)

$$AV = 20 \times Log \frac{10 \times (1 + Rf/Rs)}{|VF6 - VF5|} [dB]$$

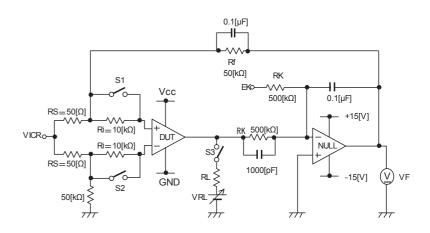
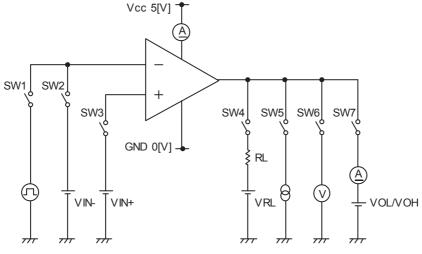



Fig.2 Measurement Circuit1 (each Comparator)

Measurement Circuit2 Switch Condition

SW No.	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	
Supply Current	_	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Low Level Output Current	VOL=1.5[V]	OFF	ON	ON	OFF	ON	ON	OFF
Low Level Output Current	IOL=4[mA]	OFF	ON	ON	OFF	OFF	OFF	ON
High Level Output Current	VOH=36[V]	OFF	ON	ON	OFF	OFF	OFF	ON
Response Time	RL=5.1[kΩ] VRL=5[V]	ON	OFF	ON	ON	OFF	ON	OFF

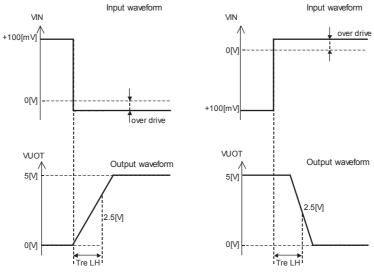


Fig.4 Response Time

Description of Electrical Characteristics

Described below are descriptions of the relevant electrical terms. Please note that item names, symbols, and their meanings may differ from those on another manufacturer's documents.

1. Absolute maximum ratings

The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components.

1.1 Power supply voltage (Vcc/GND)

Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry.

1.2 Differential input voltage (VID)

Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.

1.3 Input common-mode voltage range (VICR)

Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead.

1.4 Operating temperature range and storage temperature range (Topr, Tstg)

The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.

1.5 Power dissipation (Pd)

Indicates the power that can be consumed by a particular mounted board at ambient temperature (25°C). For packaged products, Pd is determined by maximum junction temperature and the thermal resistance.

2. Electrical characteristics

2.1 Input offset voltage (VIO)

Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0V.

2.2 Input offset current (IIO)

Indicates the difference of the input bias current between the non-inverting and inverting terminals.

2.3 Input bias current (IIB)

Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal.

- 2.4 Input common-mode voltage range (VICR) Indicates the input voltage range under which the IC operates normally.
- 2.5 Large signal differential voltage gain (AVD)

The amplifying rate (gain) of the output voltage against the voltage difference between the non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage. AVD = (output voltage fluctuation) / (input offset fluctuation)

2.6 Supply current (ICC)

Indicates the current of the IC itself that flows under specific conditions and during no-load steady state.

- 2.7 Low level output current (IOL) Denotes the maximum current that can be output under specific output conditions.
- 2.8 Low level output voltage (VOL)

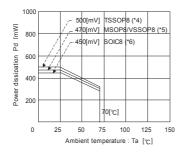
Signifies the voltage range that can be output under specific output conditions.

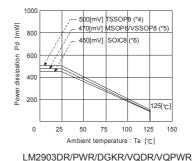
2.9 High level output current (IOH)

Indicates the current that flows into the IC under specific input and output conditions.

2.10 Response time (tre)

The interval between the application of input and output conditions.


2.11 Common-mode rejection ratio (CMRR)


Denotes the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change of input common-mode voltage) / (input offset fluctuation)

2.12 Power supply rejection ratio (PSRR)

Signifies the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation). PSRR = (change in power supply voltage) / (input offset fluctuation)

Derating Curves

LM393DR/PWR/DGKR

Package	Pd[W]	<i>θ</i> ja [℃/W]						
SOIC8 (*6)	450	3.6						
TSSOP8 (*4)	500	4.0						
MSOP8/VSSOP8 (*5)	470	3.76						
θ ja = (Tj-Ta)/Pd[°C/W]								

Fig.5 Derating Curves

Precautions

1) Unused circuits

- When there are unused circuits it is recommended that they be connected as in Fig. 6, setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICR).

2) Input terminal voltage Applying GND + 36V to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics.

Fig.6 Disable circuit example The op-amp operates when the specified voltage supplied is between Vcc and GND. Therefore, the single supply op-amp can be used as a dual supply

op-amp as well. 4) Power dissipation Pd

Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in chip temperature, including reduced current capability. Therefore, please take into consideration in closured relation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information.

5) Short-circuit between pins and erroneous mounting

Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and the power supply, or the output and GND may result in IC destruction.

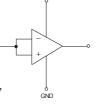
6) Terminal short-circuits

When the output and Vcc terminals are shorted, excessive output current may flow, resulting in undue heat generation and, subsequently, destruction.

7) Operation in a strong electromagnetic field

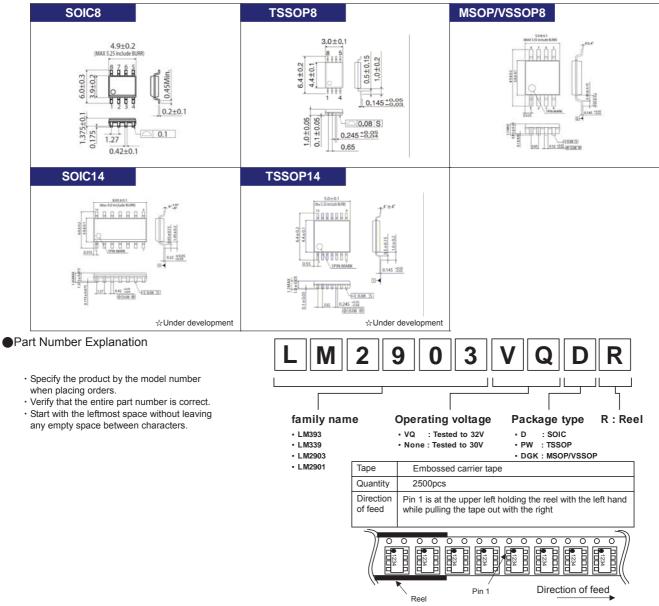
Operation in a strong electromagnetic field may cause malfunctions.

8) Radiation


This IC is not designed to withstand radiation.

9) IC handing

Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to piezoelectric (piezo) effects.


10) Board inspection

Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal . Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage.

TROPHY SERIES LM2903/2901/393/339 family

%Please order in multiples of the minimum package quantity.