Audio Processor with Pushbutton Interface

Abstract

General Description The MAX5406 stereo audio processor provides a complete audio solution with volume, balance, bass, and treble controls. It features dual 32-tap logarithmic potentiometers for volume control, dual potentiometers for balance control, and linear digital potentiometers for tone control. A simple debounced pushbutton interface controls all functions. The MAX5406 advances the wiper setting once per button push. Maxim's proprietary SmartWiper ${ }^{\text {TM }}$ control eliminates the need for a microcontroller ($\mu \mathrm{C}$) to increase the wiper transition rate. Holding the control input low for more than 1 s advances the wiper at a rate of 4 Hz for 4 s and 16 Hz thereafter. An integrated click/pop suppression feature eliminates the audible noise generated by the wiper's movements. The MAX5406 provides a subwoofer output that internally combines the left and right channels. An external filter capacitor allows for a customized cut-off frequency for the subwoofer output. A bass-boost mode enhances the low-frequency response of the left and right channels. An integrated bias amplifier generates the required (VDD $+\mathrm{V}_{\text {SS }}$) / 2 bias voltage, eliminating the need for external op amps for unipolar operation. The MAX5406 also features ambience control to enhance the separation of the left- and right-channel outputs for headphones and desktop speakers systems, and a pseudostereo feature that approximates stereo sound from a monophonic signal. The MAX5406 is available in a $7 \mathrm{~mm} \times 7 \mathrm{~mm}, 48$-pin TQFN package and in a 48-pin TSSOP package and is specified over the extended $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range.

Applications

Automotive Rear-Seat Entertainment (RSE)
Desktop Speakers
Portable Audio
PDAs or MP3 Player Docking Stations
Karaoke Machines
Flat-Screen TVs

- Audio Processor Including All Op Amps and Pots for Volume, Balance, Mute, Bass, Treble, Ambience, Pseudostereo, and Subwoofer
- 32-Tap Volume Control (2dB Steps)
- Small, 7 mm x 7mm, 48-Pin TQFN and 48-Pin TSSOP Packages
- Single +2.7 V to +5.5 V or Dual $\pm 2.7 \mathrm{~V}$ Supply Operation
- Clickless Switching and Control
- Mute Function to <-90dB (typ)
- Channel Isolation > -70dB (typ)
- Two Sets of Single-Ended or Differential Stereo Inputs Can Be Used for Summing/Mixing
- Debounced Pushbutton Interface Works with Momentary Contact Switches or Microprocessors ($\mu \mathrm{Ps}$)
- Low $0.2 \mu \mathrm{~A}$ (typ) Shutdown Supply Current
- Shutdown Stores All Control Settings
- 0.02\% (typ) THD into $10 k \Omega$ Load, $25 \mu V_{\text {RMS }}$ (typ) Output Noise
- Internally Generated 1/2 Full-Scale Bias Voltage for Single-Ended Applications
- Power-On Volume Setting to -20dB
- Internal Passive RF Filters for Analog Inputs Prevent High Frequencies from Reaching the Speakers

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX5406EUM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TSSOP	$\mathrm{U} 48-1$
MAX5406ETM ${ }^{*}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFN	$\mathrm{T} 4877-6$
${ }^{\star}$ Future product—contact factory for availability.			

Pin Configurations appear at end of data sheet.

Audio Processor with Pushbutton Interface

ABSOLUTE MAXIMUM RATINGS

L1_H, L1_L, L2_H, L2_L
to $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to the lower of $(\mathrm{VDD}+0.3 \mathrm{~V})$ or +6 V
R1_H, R1_L, R2_H, R2_L
to V SS 0.3 V to the lower of ($\mathrm{V} D \mathrm{DD}+0.3 \mathrm{~V}$) or +6 V
AMB, BALL, BALR, VOLUP, VOLDN, MUTE, SHDN, BASSDN,
BASSUP, TREBDN, TREBUP
to DGND-0.3V to the lower of (VLOGIC +0.3 V) or +6 V
CTL_, CTR_, CBL_, CBR_, CLS_, CRS_, CSUB, CBIAS, CMSNS,
AMBLI, AMBRI, BIAS
to $\mathrm{V}_{\text {SS }} \ldots-0.3 \mathrm{~V}$ to the lower of (V DD +0.3 V) or +6 V LOUT, ROUT, SUBOUT, LMR,
LPR to $\mathrm{V}_{\text {SS }} \ldots-0.3 \mathrm{~V}$ to the lower of (V DD +0.3 V) or +6 V

VDD to VLOGIC.. $\pm 6 \mathrm{~V}$
VLOGIC to DGND ...-0.3V to +6 V
DGND to VSS ..-0.3V to +6 V
LOUT, ROUT, SUBOUT Short Circuited to VSSContinuous Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
48 -Pin TQFN (derate $27.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 2222 mW
48 -Pin TSSOP (derate $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1282 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=V_{\text {LOGIC }}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0, \mathrm{~V}_{\text {BIAS }}=\mathrm{V}_{\text {CMSNS }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{DGND}=0\right.$, ambience disabled, $\mathrm{V}_{\text {AMBLI }}=\mathrm{V}_{\text {AMBRI }}=\mathrm{V}_{\text {BIAS }}, V_{\text {R1_L }}=$ $V_{L 1 _L}=V_{R 2 _L}=V_{L 2 _L}=$ external $V_{B I A S}, C_{C S U B}=0.15 \mu F, C_{C L S}=C_{C R S}=1 \mu F, C_{C B L}=C_{C B R}=3.3 n F, C_{C T L}=C_{C T R}=4.7 n F, C_{B I A S}=$ $0.1 \mu \mathrm{~F}$, CCBIAS $=50 \mu \mathrm{~F}$ (see the Typical Application Circuit), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$). (Note1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Signal-Inputs Input Resistance	RIN	With respect to	RINH	8	10		k Ω
		VBIAS	RINL	16	20		
Signal-Inputs Input Capacitance	CIN	With respect to $V_{\text {BIAS }}$		5			pF
RF Rejection		2 MHz to 2.4 GHz two-tone test, $2 / 2.01 \mathrm{MHz}$ input to 10 kHz out		20			dBc
Differential Input Voltage Range	VIN	$V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{BI}} \mathrm{AS}$, gain error $\leq-0.5 \mathrm{~dB}$		-4		+4	V
		$\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}, \mathrm{~V}_{S S}=-2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{BIAS}}$, gain error $\leq-0.5 \mathrm{~dB}$		-4.5		+4.5	
Common-Mode Input Voltage Range	$\mathrm{V}_{\text {cm }}$	$\begin{aligned} & V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=0, \mathrm{~V}_{\mathrm{BIAS}}=\mathrm{V}_{\mathrm{DD}} / 2, \\ & \mathrm{~V}_{\mathrm{DIFF}}=100 \mathrm{mV} \end{aligned}$		$\mathrm{VSS}+0.5 \mathrm{~V}$	VDD - 0.5V		V
		$\begin{aligned} & V_{D D}=+2.7 \mathrm{~V}, V_{S S}=-2.7 \mathrm{~V}, V_{B I A S}=0, \\ & V_{\text {DIFF }}=100 \mathrm{mV} \end{aligned}$					
Bias Voltage	VBIAS	Internally generated ($\mathrm{V}_{\text {CMSNS }}=\mathrm{V}_{\text {SS }}$)		$\left(\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\text {SS }}\right) / 2$			V
Bias-Voltage Input Current		$\begin{aligned} & \mathrm{L}_{-} \mathrm{H}=\mathrm{R}_{-} \mathrm{H}=\mathrm{V}_{\text {BIAS }}, L_{-} \mathrm{L}=\mathrm{R}_{-_} \mathrm{L}= \\ & \text { open, } \mathrm{V}_{\text {CMSNS }}=\mathrm{V}_{\text {DD }} \end{aligned}$		1			mA
AUDIO PROCESSING FUNCTIONS							
Maximum Balance Difference		(Note 2)		10	12	14	dB
Minimum Balance Difference		(Note 2)			0		dB
Balance Resolution		(Note 2)			2		dB
Maximum Volume Attenuation		(Note 2)		-63	-62	-59	dB
Minimum Volume Attenuation		(Note 2)		-0.5	0	+0.5	dB
Volume Resolution		(Note 2)			2		dB
Volume-Control Steps		(Note 2)		32			steps

Audio Processor with Pushbutton Interface

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=V_{\text {LOGIC }}=+5.0 \mathrm{~V}, \mathrm{~V}_{S S}=0, V_{\text {BIAS }}=V_{C M S N S}=V_{D D} / 2, D G N D=0\right.$, ambience disabled, $V_{\text {AMBLI }}=V_{\text {AMBRI }}=V_{\text {BIAS }}, V_{\text {R1_L }}=$ $V_{L 1} L=V_{R 2 _}=V_{L 2 _L}=$ external $V_{B I A S}, C_{C S U B}=0.15 \mu F, C_{C L S}=C_{C R S}=1 \mu F, C_{C B L}=C_{C B R}=3.3 n F, C_{C T L}=C_{C T R}=4.7 n F, C_{B I A S}=$ $0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {CBIAS }}=50 \mu \mathrm{~F}$ (see the Typical Application Circuit), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$ unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$). (Note1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Gain Matching of Input 1 to Input 2 of Each Channel		Volume = OdB (Note 2)	-0.1		+0.1	dB
Gain Matching of Left to Right Channel		Volume $=0 \mathrm{~dB}$ (Note 2)	-0.1		+0.1	dB
Bass-Boost Range		$\begin{aligned} & \mathrm{fBASS}=1 \mathrm{kHz}, \text { treble }=0 \mathrm{~dB}, \\ & \mathrm{C}_{\mathrm{CB}}^{-}= \\ & =\text {open, } \mathrm{C}_{\mathrm{CT}}= \\ & =\text { open }(\text { Note } 3) \end{aligned}$	10	14		dB
Bass-Cut Range		$\begin{aligned} & \text { fBASS }=1 \mathrm{kHz}, \text { treble }=0 \mathrm{~dB}, \\ & \mathrm{C}_{\mathrm{CB}}^{-}= \\ & =\text {open, } \mathrm{C}_{\mathrm{CT}}= \\ & =\text { open }(\text { Note } 3) \end{aligned}$	10	14		dB
Treble-Boost Range		$\begin{aligned} & \text { fTREBLE }=1 \mathrm{kHz} \text {, bass }=0 \mathrm{~dB}, \\ & \text { CCB_ }_{\text {C }}=\text { open, } \text { CCT_ }_{-}=\text {short }(\text { Note } 3) \end{aligned}$	10	15		dB
Treble-Cut Range		$\begin{aligned} & \text { fTREBLE }=1 \mathrm{kHz} \text {, bass }=0 \mathrm{~dB}, \\ & \text { CCB_ }^{\text {o }} \text { open, } \text { CCT_ }^{2}=\text { short (Note 3) } \end{aligned}$	10	15		dB
Bass-Boost/-Cut Steps		Max boost to max cut		21		steps
Treble-Boost/-Cut Steps		Max boost to max cut		21		steps
Bass End-to-End Resistance	RBPOT			116		k Ω
Treble End-to-End Resistance	RTPOT			17		k Ω
Bass Series Resistance	R_{B}			40		$\mathrm{k} \Omega$
Treble Series Resistance	RT			3.5		k Ω
Mute Attenuation				-90		dB
AC PERFORMANCE ($\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.7 \mathrm{~V}$, volume $=0 \mathrm{~dB}$, treble $=$ bass $\left.=0 \mathrm{~dB}\right)$						
Total Harmonic Distortion Plus Noise	THD+N	(Notes 4, 5)		0.02	0.05	\%
Interchannel Crosstalk		L to R or R to L		-70		dB
ROUT/LOUT OUTPUTS						
Maximum Load Capacitance	Cload			100		pF
Output-Voltage Swing	VOUTP-P	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}, \mathrm{~V}_{S S}=-2.7 \mathrm{~V}$	-2.3		+2.3	V
Output Offset Voltage	Voos	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}, \mathrm{~V}_{S S}=-2.7 \mathrm{~V}, \text { volume }=0 \mathrm{~dB}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text {, inputs }=\mathrm{V}_{\mathrm{BI}} \mathrm{AS} \end{aligned}$	-30	0	+30	mV
Short-Circuit Output Current	ISC	Shorted to VSS		15		mA
Output Resistance	R_OUT	LLOAD $=100 \mu$ A to $500 \mu \mathrm{~A}$			10	Ω

Audio Processor with Pushbutton Interface

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=V_{\text {LOGIC }}=+5.0 \mathrm{~V}, \mathrm{~V}_{S S}=0, \mathrm{~V}_{\mathrm{BIAS}}=\mathrm{V}_{\mathrm{CMSNS}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{DGND}=0\right.$, ambience disabled, $\mathrm{V}_{\text {AMBLI }}=\mathrm{V}_{\text {AMBRI }}=\mathrm{V}_{\text {BIAS }}, \mathrm{V}_{\text {R1_L }}=$ $V_{L 1 _L}=V_{R 2 _L}=V_{L 2 _L}=$ external $V_{B I A S}, C_{C S U B}=0.15 \mu F, C_{C L S}=C_{C R S}=1 \mu F, C_{C B L}=C_{C B R}=3.3 n F, C_{C T L}=C_{C T R}=4.7 n F, C_{B I A S}=$ $0.1 \mu \mathrm{~F}, \mathrm{CCBIAS}=50 \mu \mathrm{~F}$ (see the Typical Application Circuit), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$). (Note1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Noise	e_{n}	$\mathrm{fBW}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{BIAS}}$, mute on, noise measured at LOUT and ROUT (Notes 2, 4, 5)		3.5	9.5	$\mu \mathrm{V}_{\text {RMS }}$
		$\mathrm{f}_{\mathrm{BW}}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{BI}}$ AS, mute off, volume $=0 \mathrm{~dB}$, noise measured at LOUT and ROUT (Notes 2, 4, 5)		25	35	
Power-Supply Rejection Ratio	PSRR	$100 \mathrm{mV} \mathrm{P}_{\text {-P }}$ at 217 Hz on $\mathrm{V}_{\text {DD }}$		-70		dB
		100 mV P-P at 1 kHz on $\mathrm{V}_{\text {DD }}$		-65		

SUBWOOFER OUTPUT

Gain		$\begin{aligned} & \left(V_{\text {L1_ }} \text { - }- \text { VL1_L } \text {) to (VSUBOUT - VBIAS }\right), \\ & \text { volume }=0 \mathrm{~dB}(\text { Note 2) } \end{aligned}$		-6		dB
Highpass Filter Cutoff Frequency		Volume $=0 \mathrm{~dB}$		15		Hz
Internal Highpass Cutoff Resistance	R_S	Figure 12		13.8		k Ω
Lowpass Filter Cutoff Frequency		Volume $=0 \mathrm{~dB}$		100		Hz
Internal Lowpass Cutoff Resistance	Rsub	Figure 12		10.6		k Ω
Maximum Load Capacitance	CSUBLOAD			100		pF
Output-Voltage Swing	VSUBOUTP-P	$R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-2.7 \mathrm{~V}$	-2.3		+2.3	V
Output Offset Voltage	Vsuboos	$\begin{aligned} & V_{D D}=+2.7 \mathrm{~V}, \mathrm{~V}_{S S}=-2.7 \mathrm{~V} \text {, volume }=0 \mathrm{~dB}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	-15	0	+15	mV
Short-Circuit Output Current	IsubSC	Shorted to V $\mathrm{V}_{\text {S }}$		12		mA
Output Resistance	RSUBOUT	ILOAD $=100 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$			10	Ω
Output Noise	e_{n}	$\mathrm{f}_{\mathrm{BW}}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{BIAS}}$, mute on, noise measured at SUBOUT (Notes 2, 4, 5)		9	11	$\mu \mathrm{V}$ RMS
		$\mathrm{f}_{\mathrm{BW}}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{BIAS}}$, volume $=0 \mathrm{~dB}$, mute off, noise measured at SUBOUT (Notes 2, 4, 5)		25	35	
Power-Supply Rejection Ratio	PSRR	$100 \mathrm{mV} \mathrm{P}_{-P}$ at 217 Hz on $\mathrm{V}_{\text {DD }}$		-70		dB
		100 mV P-P at 1 kHz on $\mathrm{V}_{\text {D }}$		-65		

PUSHBUTTON CONTACT INPUTS (MUTE, AMB, $\overline{\text { VOLUP, }} \overline{\text { VOLDN, }}, \overline{B A L L}, \overline{B A L R}, \overline{B A S S U P}, \overline{B A S S D N}, \overline{T R E B U P}, \overline{T R E B D N})$

Internal Pullup Resistor	RPU		50	$\mathrm{k} \Omega$
Single-Pulse Input Low Time	tLPW	Figures 2a, 11a, 11b	30	ms
Repetitive Input Pulse Separation Time	tHPW	Figure 2b, 11a, 11b	40	ms
First Autoincrement Point	$\mathrm{t}_{\mathrm{A} 1}$	Figure 3	1	s
First Autoincrement Rate	$\mathrm{f}_{\mathrm{A} 1}$	Figure 3	4	Hz
Second Autoincrement Point	$\mathrm{t}_{\mathrm{A} 2}$	Figure 3	4	s
Second Autoincrement Rate	$\mathrm{f}_{\mathrm{A} 2}$	Figure 3	16	Hz

Audio Processor with Pushbutton Interface

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=V_{\text {LOGIC }}=+5.0 \mathrm{~V}, \mathrm{~V}_{S S}=0, V_{\text {BIAS }}=V_{C M S N S}=V_{D D} / 2, D G N D=0\right.$, ambience disabled, $V_{\text {AMBLI }}=V_{\text {AMBRI }}=V_{\text {BIAS }}, V_{\text {R1_L }}=$ $V_{L 1} L=V_{R 2 _L}=V_{L 2 _L}=$ external $V_{B I A S}, C_{C S U B}=0.15 \mu F, C_{C L S}=C_{C R S}=1 \mu \mathrm{~F}, C_{C B L}=C_{C B R}=3.3 \mathrm{nF}, C_{C T L}=C_{C T R}=4.7 n F, C_{B I A S}=$ $0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {CBIAS }}=50 \mu \mathrm{~F}$ (see the Typical Application Circuit), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$ unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$). (Note1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input-Voltage High	V_{IH}		2.4			V
Input-Voltage Low	$\mathrm{V}_{\text {IL }}$				0.8	V
SHDN Input-Voltage High	VIHSHDN		3.4			V
SHDN Input-Voltage Low	VILSHDN				0.8	V
Input Leakage Current					± 5	$\mu \mathrm{A}$
Input Capacitance				5		pF

DIGITAL INPUTS (VLOGIC $\leq 3.6 \mathrm{~V})(\overline{\mathrm{MUTE}}, \overline{\mathrm{AMB}}, \overline{\mathrm{VOLUP},} \overline{\mathrm{VOLDN}}, \overline{\mathrm{BALL}}, \overline{\mathrm{BALR},} \overline{\mathrm{BASSUP}}, \overline{\mathrm{BASSDN}}, \overline{\mathrm{TREBUP}}, \overline{\text { TREBDN}})$

Input-Voltage High	$\mathrm{V}_{\text {IH }}$		2	V
Input-Voltage Low	$\mathrm{V}_{\text {IL }}$			0.6
$\overline{\text { SHDN Input-Voltage High }}$	$\mathrm{V}_{\text {IHSHDN }}$		V	
$\overline{\text { SHDN Input-VoItage Low }}$	$\mathrm{V}_{\text {ILSHDN }}$		2	V
Input Leakage Current				0.6
Input Capacitance			V	

TIMING CHARACTERISTICS

Wiper Settling Time	twS	Click/pop suppression inactive, Figures 2a, 11a, 11b		45			ms
POWER SUPPLIES ($\mathbf{V}_{\text {cMSNS }}=\mathbf{V}_{\text {SS }}$, internal bias enabled)							
Supply-Voltage Difference	$V_{D D}-V_{S S}$					+5.5	V
Positive Analog Supply Voltage	VDD			+2.7		+5.5	V
Negative Analog Supply Voltage	VSS			-2.7		0	V
Dual-Supply Positive Supply Voltage	$V_{D D}$	$V_{S S}=-2.7 \mathrm{~V}$		0		+2.7	V
Active Positive Supply Current	IDD	No signal, all logic inputs pulled high VLOGIC or unconnected, SHDN $=$ VLO $R_{L}=10 k \Omega$ (Note 6)			10	13	mA
Active Negative Supply Current (Note 6)	Iss	No signal, all logic inputs connected to DGND or VLOGIC, $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$, $\mathrm{V}_{\text {SS }}=$		-13	-10		mA
		No signal, all logic inputs connected to DGND or VLOGIC, $\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}$, $V_{S S}=-2.7 \mathrm{~V}$		-13	-10		
Shutdown Supply Current (Note 6)	ISHDN	No signal, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0$, all logic inputs connected to DGND or VLOGIC $\overline{S H D N}=$ DGND			0.2		$\mu \mathrm{A}$
		No signal, $\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.7 \mathrm{~V}$, all logic at DGND or VLOGIC, $\overline{\text { SHDN }}$ = DGND	IDD		0.2		
			ISS		50		

Audio Processor with Pushbutton Interface

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=V_{\text {LOGIC }}=+5.0 \mathrm{~V}, \mathrm{~V}_{S S}=0, \mathrm{~V}_{\text {BIAS }}=\mathrm{V}_{\text {CMSNS }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{DGND}=0\right.$, ambience disabled, $\mathrm{V}_{\text {AMBLI }}=\mathrm{V}_{\text {AMBRI }}=\mathrm{V}_{\text {BIAS }}, V_{\text {R1_L }}=$ $V_{L 1 _L}=V_{R 2 _L}=V_{L 2} L=$ external $V_{B I A S}, C_{C S U B}=0.15 \mu F, C_{C L S}=C_{C R S}=1 \mu F, C_{C B L}=C_{C B R}=3.3 n F, C C T L=C_{C T R}=4.7 n F, C_{B I A S}=$ $0.1 \mu \mathrm{~F}$, C CBIAS $=50 \mu \mathrm{~F}$ (see the Typical Application Circuit), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$). (Note1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power-Up Time	tpu	Power first applied, _OUT $=-20 \mathrm{~dB}$		1		S
Wake-Up Time	twu	From shutdown (Note 7)		1		s
Logic Supply Voltage	VLogic	DGND $=0, \mathrm{~V}_{\text {LOGIC }} \leq \mathrm{V}_{\text {DD }}$	+2.7		VDD	V
Logic Active Supply Current	ILOGIC	No signal, one button pressed, remaining logic inputs connected to VLOGIC or unconnected			150	$\mu \mathrm{A}$
Logic Shutdown Supply Current		No signal, all logic inputs connected to VLOGIC or unconnected, $\overline{\text { SHDN }}=$ DGND (Note 6)		0.2	2	$\mu \mathrm{A}$

Note 1: All devices 100% production tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.
Note 2: Treble $=$ bass $=0 \mathrm{~dB} . \mathrm{C}_{C B_{-}}=$open, $\mathrm{C}_{C T}=$ short, left input signal $=$ right input signal $=+2 \mathrm{~V}$.
Note 3: See Tables 3 and 4 and Figure 7. $\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}, \mathrm{~V} S \mathrm{~S}=-2.7 \mathrm{~V}$.
Note 4: Guaranteed by design.
Note 5: Measured with A-weighted filter.
Note 6: Supply current measured while attenuator position is fixed.
Note 7: Set_OUT $=0 \mathrm{~dB}$ and shutdown device $\overline{\mathrm{SHDN}}=0$. twu is the time required for _OUT to reach OdB after $\overline{\mathrm{SHDN}}$ goes high.

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Audio Processor with Pushbutton Interface

 Typical Operating Characteristics (continued)($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Audio Processor with Pushbutton Interface

8 \qquad

Audio Processor with Pushbutton Interface

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

 Typical Operating Characteristics (continued)

TOTAL SUPPLY CURRENT

CROSSTALK vs. FREQUENCY

vs. SUPPLY VOLTAGE (IDD + LLOGIC)

Audio Processor with Pushbutton Interface

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Audio Processor with Pushbutton Interface

Pin Description

PIN		NAME		
TSSOP	TQFN			
1	43	CBIAS	Bypass Capacitor Connection Point to Internally Generated Bias. Bypass CBIAS with a 50رF capacitor to system analog ground.	
2	44	VSS	Negative Power-Supply Input. Bypass with a 0.14F capacitor to system analog ground.	
3	45	L1_H	Left-Channel 1 High Terminal Input. Connect the source between L1_H and L1_L for differential signals. Connect the source to L1_H and tie L1_L to BIAS for single-ended signals.	
4	46	L1_L	Left-Channel 1 Low Terminal Input. Connect the source between L1_H and L1_L for differential signals. Connect L1_L to BIAS for single-ended signals.	
5	47	L2_L	Left-Channel 2 Low Terminal Input. Connect the source between L2_H and L2_L for differential signals. Connect L2_L to BIAS for single-ended signals.	
6	48	L2_H	Left-Channel 2 High Terminal Input. Connect the source between L2_H and L2_L for differential signals. Connect the source to L2_H and tie L2_L to BIAS for single-ended signals.	
8	2	AMBLI	LMR	Left Minus Right Output Signal. LMR output provides a signal that is the difference of left and right input signals. See the Ambience Control section for more details.
Ambience Left-Channel Input. AMBLI provides the proper ambient effect at LOUT based on the				
more details.				

Audio Processor with Pushbutton Interface

Pin Description (continued)

PIN		NAME	FUNCTION
TSSOP	TQFN		
19	13	$\overline{\text { MUTE }}$	Active-Low Mute Control Input. Toggles state between muted and not muted. When in the mute state, all wipers are moved to the low end of the volume potentiometers. The last state is restored when MUTE is toggled again. The power-on state is not muted. $\overline{\text { MUTE }}$ is internally pulled up with $50 \mathrm{k} \Omega$ to VLOGIC.
20	14	$\overline{\text { VOLDN }}$	Active-Low Downward Volume Control Input. Press $\overline{\text { VOLDN }}$ to decrease the volume. This simultaneously moves left and right volume wipers towards higher attenuation. VOLDN is internally pulled up with $50 \mathrm{k} \Omega$ to VLOGIC.
21	15	$\overline{\text { VOLUP }}$	Active-Low Upward Volume Control Input. Press $\overline{\text { VOLUP }}$ to increase the volume. This simultaneously moves the left and right volume wipers towards the the lower attenuation. VOLUP is internally pulled up with $50 \mathrm{k} \Omega$ to VLOGIC.
22	16	$\overline{\text { BALL }}$	Active-Low Left Balance Control Input. Press $\overline{\mathrm{BALL}}$ to move the balance towards the left channel. $\overline{\text { BALL }}$ is internally pulled up with $50 \mathrm{k} \Omega$ to VLOGIC.
23	17	$\overline{\text { BALR }}$	Active-Low Right Balance Control Input. Press $\overline{\mathrm{BALR}}$ to move the balance towards the right channel. $\overline{\text { BALR }}$ is internally pulled up with $50 \mathrm{k} \Omega$ to V Logic.
24	18	DGND	Digital Ground
25	19	VLOGIC	Digital Power-Supply Input. Bypass with 0.1 $\mu \mathrm{F}$ to DGND.
26	20	$\overline{\text { SHDN }}$	Active-Low Shutdown Control Input. In shutdown mode, the MAX5406 stores every wiper's last position. Each wiper moves to the highest attenuation level of its corresponding potentiometer. Terminating shutdown mode restores every wiper to its previous setting. In shutdown, the MAX5406 does not acknowledge any pushbutton command.
27	21	$\overline{\text { BASSDN }}$	Active-Low Downward Bass Control Input. Press $\overline{\text { BASSDN }}$ to decrease bass boost. Bass boost emphasizes the signal's low-frequency components. BASSDN is internally pulled up with $50 \mathrm{k} \Omega$ to VLOGIC. To implement a bass-boost button, connect $\overline{\text { BASSDN }}$ to $\overline{\text { BASSUP. Presses then toggle the }}$ state between flat and full bass boost on each button press.
28	22	$\overline{\text { BASSUP }}$	Active-Low Upward Bass Control Input. Press BASSUP to increase bass boost. Bass boost emphasizes the signal's low frequency components. $\overline{\text { BASSUP }}$ is internally pulled up with $50 \mathrm{k} \Omega$ to VLOGIC. To implement a bass-boost button, connect $\overline{\text { BASSUP }}$ to $\overline{\text { BASSDN. Presses then toggle the }}$ state between flat and full bass boost on each button press.
29	23	TREBDN	Active-Low Downward Treble Control Input. Press TREBDN to decrease the treble boost. Treble boost emphasizes the signal's high-frequency components. TREBDN is internally pulled up with $50 \mathrm{k} \Omega$ to VLOGIC.
30	24	$\overline{\text { TREBUP }}$	Active-Low Upward Treble Control Input. Press TREBUP to increase the treble boost. Treble boost emphasizes the signal's high-frequency components. TREBUP is internally pulled up with $50 \mathrm{k} \Omega$ to VLOGIC.
31	25	$\overline{\text { AMB }}$	Active-Low Ambience Switch Control Input. Drive $\overline{\mathrm{AMB}}$ low to toggle on/off the ambience function. $\overline{\mathrm{AMB}}$ is internally pulled up with $50 \mathrm{k} \Omega$ to V LOGIC.
33	27	CRSN	Subwoofer Right-Channel Highpass Filter Capacitor Negative Terminal. Connect a capacitor between CRSN and CRSP to set the highpass cutoff frequency at SUBOUT. See the Subwoofer Ouput section for more details.
34	28	CRSP	Subwoofer Right-Channel Highpass Filter Capacitor Positive Terminal. Connect a capacitor between CRSP and CRSN to set the highpass cutoff frequency at SUBOUT. See the Subwoofer Ouput section for more details.
35	29	ROUT	Right-Channel Output

Audio Processor with Pushbutton Interface

Pin Description (continued)

PIN		NAME	FUNCTION
TSSOP	TQFN		
36	30	CBR2	Right-Channel Bass Tone Control Capacitor Terminal 2. Connect a nonpolorized capacitor between CBR2 and CBR1 to set the bass cutoff frequency. See the Tone Control section for more details.
37	31	CBR1	Right-Channel Bass Tone Control Capacitor Terminal 1. Connect a capacitor between CBR1 and CBR2 to set the bass cutoff frequency. See the Tone Control section for more detail.
38	32	CTR2	Right-Channel Treble Tone Control Capacitor Terminal 2. Connect a capacitor between CTR2 and CTR1 to set the treble cutoff frequency. See the Tone Control section for more details.
39	33	CTR1	Right-Channel Treble Tone Control Capacitor Terminal 1. Connect a capacitor between CTR1 and CTR2 to set the treble cutoff frequency. See the Tone Control section for more details.
40	34	AMBRI	Ambience Right-Channel Input. AMBRI provides the proper ambient effect at ROUT based on the gain between LPR and AMBRI. See the Ambience Control section for more details.
41	35	LPR	Left Plus Right Output Signal. LPR output provides a signal that is a combination of the left and right input signals. See the Ambience Control section for more details.
42	36	VDD	Positive Analog Supply Voltage. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to system analog ground.
43	37	R2_H	Right-Channel High Terminal 2. Connect the source between R2_H and R2_L for differential signal. Connect the source to R2_H and tie R2_L to BIAS for single-ended signals.
44	38	R2_L	Right-Channel Low Terminal 2. Connect the source between R2_H and R2_L for differential signal. Connect R2_L to BIAS for single-ended signals.
45	39	R1_L	Right-Channel Low Terminal 1. Connect the source between R1_H and R1_L for differential signal. Connect R1_L to BIAS for single-ended signals.
46	40	R1_H	Right-Channel High Terminal 1. Connect the source between R1_H and R1_L for differential signal. Connect the source to R1_H and tie R1_L to BIAS for single-ended signals.
47	41	CMSNS	Common-Mode Voltage Sense. Connect to VDD to disable the internal bias generator and drive BIAS with external source to set output DC level.
48	42	BIAS	Internally Generated Bias Voltage. Connect CMSNS to VSS to enable the internally generated VBIAS. $\mathrm{V}_{\text {BIAS }}=\left(\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\text {SS }}\right) / 2$. Connect a $0.1 \mu \mathrm{~F}$ capacitor between BIAS and system analog ground as close to the device as possible. Do not use BIAS to drive external circuitry.

Audio Processor with Pushbutton Interface

Figure 1. Block Diagram

Detailed Description
The MAX5406 implements dual logarithmic potentiometers to control volume, dual potentiometers to control balance, and dual linear digital potentiometers to set the tone (Figure 1). A debounced pushbutton interface is provided to control the audio-processor settings. The MAX5406 provides differential buffered inputs with RF
filters to maximize noise reduction and a mixer to produce an equal amount of left and right input channels. In addition to a differential output, the MAX5406 provides a monophonic output at SUBOUT for systems with a subwoofer.

Audio Processor with Pushbutton Interface

Table 1. Wiper Action vs. Pushbutton Contact Duration

CONTACT DURATION	WIPER ACTION
$\mathrm{t}<\mathrm{t}$ LPW	No motion (debouncing) (Figures 2a and 2b)
$\mathrm{tLPW} \leq \mathrm{t} \leq 1 \mathrm{~s}$	Wiper changes position once (Figures 2a and 2b)
$1 \mathrm{~s} \leq \mathrm{t}<4 \mathrm{~s}$	Wiper changes position at a rate of 4 Hz (Figure 3)
$\mathrm{t} \geq 4 \mathrm{~s}$	Wiper changes position at a rate of 16 Hz (Figure 3)

Up/Down Interface

The MAX5406 features independent control inputs for volume, balance, ambience, and tone control. All control inputs are internally debounced for use with momentary contact SPST switches. All switch inputs are pulled up to VLOGIC through $50 k \Omega$ resistors. The wiper setting advances once per button press held for up to 1s (see Figures 2a and 2b). Maxim's SmartWiper control circuitry allows the wiper to advance at a rate of 4 Hz when an input is held low from 1 s up to 4 s , and at a rate of 16 Hz if the contact is maintained for greater than 4 s without the need of a $\mu \mathrm{P}$ (see Figure 3 and Table 1). The MAX5406 ignores multiple buttons being pressed. A $\mu \mathrm{P}$ can also be used to control the MAX5406.

Volume Control
The MAX5406 implements dual logarithmic potentiometers for volume control that change the sound level by 2 dB per button push (see Table 2).
In volume-control mode, the MAX5406's wipers move up and down together (see Figure 4). The balance is unaffected (see the Balance Control section). Left and right balance settings are maintained when adjusting the volume.

Balance Control

In balance-control mode, the MAX5406 uses dual potentiometers to control balance for the left and right channels. Pressing BALR increases the right channel wiper by 1 dB and decreases the left channel by 1 dB . This causes the right channel to sound louder than the left channel by 2 dB . The overall volume remains constant when adjusting the balance (Figure 5).

Table 2. Attenuator Position For Volume Potentiometers

POSITION	ATTENUATION (dB)
0	0
1	2
2	4
$\ldots .$.	\ldots.
10 (Power-on state)	20
$\ldots \ldots$	60
30	62
31	>90

Volume and Balance Interaction

Volume and balance operation is simple. However, there are some interactions that occur at the extreme wiper positions. These interactions are described in this section of the data sheet.
When the volume setting is at the maximum level, the first command to move the balance toward the left channel forces the right channel to decrease by 1 dB . Subsequent pressing of $\overline{\mathrm{BALL}}$ causes the right channel to decrease by 2 dB . At this position, shown in the right column of Figure 6a, the left-channel volume is maximum, but the actual separation between L and R is $3 d B$.
At this position, pressing VOLDN restores the actual balance setting only after VOLDN is pressed at least half as many times as $\overline{\text { BALL }}$ was (previously) pressed (shown in the middle and right column of Figure 6b) to increase the right-channel balance.
The volume and balance interaction is similar when volume setting is at the minimum level.

Tone Control

The MAX5406 implements a linear potentiometer to control the bass and treble over a range of $\pm 10 \mathrm{~dB}$ using the recommended component values.
Note that the actual response achieved is determined by the values of both external and internal components and the design equations are somewhat interactive.
Use the values shown in the Electrical Characteristics as a good starting point for choosing component values. These components yield shelf turnovers at 100 Hz (bass) and 10 kHz (treble) with a total $\pm 10 \mathrm{~dB}$ of boost at 100 Hz and 10 kHz . The shoulder or flat portion of the response is centered on 1 kHz .
The circuit in Figure 7 shows the internal structure of the tone-control system should modification to the

Audio Processor with Pushbutton Interface

Figure 2a. Single-Pulse Input

Figure 2b. Repetitive Input-Pulse Separation Time

Figure 3. Accelerated Wiper Motion

Audio Processor with Pushbutton Interface

Figure 4. Basic Volume-Control Operation

Figure 5. Basic Balance-Control Operation

Figure 6. Volume and Balance Interaction
response curve be desired. A combination of internal resistors and external capacitors determine the response of the circuit.
Use the following equations to calculate the external capacitor values for the desired 3dB frequencies:

$$
\mathrm{f}_{\mathrm{BASS}(3 \mathrm{~dB})}=\frac{1}{2 \pi \times \mathrm{R}_{\mathrm{BPOT}} \times \mathrm{C}_{\mathrm{B}_{-}}}
$$

where RBPOT, nominally $116 \mathrm{k} \Omega$, is the bass potentiometer (see Figure 7).

$$
\mathrm{f}_{\operatorname{TREBLE}(3 \mathrm{~dB})}=\frac{1}{2 \pi \times \mathrm{R}_{\mathrm{T}} \times \mathrm{C}_{\mathrm{T}_{-}}}
$$

where R_{T} is nominally $3.5 \mathrm{k} \Omega$ (see Figure 7).

Audio Processor with Pushbutton Interface

Figure 7. Bass/Treble Output Stage

Alternatively, the following formulas can be used to calculate and design for the bass and treble turnover frequencies:

$$
\mathrm{f}_{\mathrm{BASS}(\text { TURNOVER })}=\frac{1}{2 \pi \times \mathrm{R}_{\mathrm{B}} \times \mathrm{C}_{\mathrm{B}_{-}}}
$$

where R_{B} is nominally $40 k \Omega$ (see Figure 7).

$$
f_{T R E B L E}(\text { TURNOVER })=\frac{1}{2 \pi \times\left(R_{T}+R_{B}\right) \times C_{T_{-}}}
$$

Tables 3 and 4 show the effects of the external bass and treble capacitance on the maximum output attentuation.

Table 3. Effect of Base Tone Control Capacitor (CB_) on Bass Boost/Bass Cut at 100 Hz

$\mathbf{C B}_{\mathbf{B}}$ (nF)	CUT (dB)	BOOST (dB)
0.00	-11.79	11.81
0.47	-11.25	11.26
1.80	-11.05	11.08
2.20	-10.95	10.96
2.70	-10.85	10.86
3.30	-10.60	10.62
4.70	-10.57	10.55
6.80	-10.10	10.15
8.20	-9.66	9.66

Figure 8. Matrix Surround Configuration

Figure 9. Ambience Filter

Figure 10. Pseudostereo Filter

Table 4. Effect of Treble Tone Control Capacitor (CT_) on Treble Boost/Treble Cut at $\mathbf{1 0 k H z}$

$\mathbf{C}_{\mathbf{T}_{\mathbf{\prime}} \text { (} \mathbf{n F} \text {) }}$	$\mathbf{C U T}$ (dB)	BOOST (dB)
0.47	-7.80	7.66
1.80	-12.55	12.58
2.20	-12.89	12.95
2.70	-13.15	13.18
3.30	-13.33	13.34
4.70	-13.55	13.58
6.80	-13.59	13.61
8.20	-13.61	13.63
Open	-13.79	13.75

Audio Processor with Pushbutton Interface

Figure 11a. Wiper Transition Timing Diagram (No Zero Crossing Detected)

Ambience Control

Use the ambience function for boom boxes, headphones, desktop speakers, or other audio products where the speakers are physically close together. A stereo signal is designed to be played over speakers that have a wide physical separation. The ears and brain combine the sound from these two sources to create a perception of sounds distributed in space. In the case of headphones, this wide physical separation does not exist, resulting in the sound apparently coming from somewhere inside the head. A similar situation exists when the speakers are not widely separated, for example when they are located on a desk or inside a
single enclosure. One way to compensate for this is to increase the apparent separation of the L and R signals arithmetically. The L and R signals can be modeled as a channel-specific component added to a monocomponent. To emphasize the channel-specific component, one needs to remove the opposite channel-specific component from the monocomponent.
This function is accomplished with circuitry inside the MAX5406 and external network. Control the ambience effect with the $\overline{\mathrm{AMB}}$ button that toggles between wide (full effect) and normal (no ambience effect). Use the following equations for matrix surround (fixed ambience):

Audio Processor with Pushbutton Interface

Figure 11b. Wiper Transition Timing Diagram (Zero Crossing Detected)

$$
\begin{aligned}
& \text { LOUT }=L_{\text {IN }}+\AA_{(S)} \times \frac{\left(L_{\text {IN }}-R_{\text {IN }}\right)}{4} \\
& \text { ROUT }=R_{I_{N}}-F_{R(S)} \times \frac{\left(L_{I N}-R_{I N}\right)}{4}
\end{aligned}
$$

where $\left(\frac{L_{\mathbb{N}}-R_{\mathbb{I}}}{4}\right)$ is the signal at LMR.
When $\mathrm{F}_{\mathrm{L}(\mathrm{S})}$ and $\mathrm{F}_{\mathrm{R}(\mathrm{S})}=2(\mathrm{LMR}, \mathrm{AMBLI}$, and AMBRI are connected with the multiplier network of Figure 8), the equations become:

LOUT $=\frac{3}{2} L_{\text {IN }}-\frac{1}{2} R_{\text {IN }}$
ROUT $=\frac{3}{2} R_{\text {IN }}-\frac{1}{2} L_{I N}$
Use a passive filter network as shown in Figure 9 to filter and delay the LMR signal in more advanced applications.

Audio Processor with Pushbutton Interface

$$
\begin{aligned}
& \text { Pseudostereo creates a sound approximating stereo } \\
& \text { from a monophonic signal. Use the equations for pseu- } \\
& \text { dostereo response calculations: } \\
& \qquad L O U T=L_{I N}+F_{L(S)} \times \frac{\left(L_{I N}+R_{I N}\right)}{4} \\
& R O U T=R_{I N}-F_{R(S)} \times \frac{\left(L_{I N}+R_{I N}\right)}{4}
\end{aligned}
$$

Pseudostereo
where $\left(\frac{L_{I N}+R_{I N}}{4}\right)$ are the signals at LPR.
Connect a pseudostereo network ($\mathrm{F}_{\mathrm{L}(\mathrm{S})}$ and $\left.\mathrm{F}_{\mathrm{R}(\mathrm{S})}\right)$ as shown in Figure 10 to filter and delay the LPR signal and create the pseudo signal.

Click/Pop Suppression

The click/pop suppression feature reduces the audible noise (clicks and pops) that results from wiper transitions. The MAX5406 minimizes this noise by allowing the wiper position changes only when the potential across the pot is zero. Thus, the wiper changes position only when the voltage at L_{-}is the same as the voltage at the corresponding $\mathrm{H}_{\mathbf{\prime}}$. Each wiper has its own suppression and timeout circuitry (see Figure 11a). The MAX5406 changes wiper position after 32ms or when high $=$ low, whichever occurs first (see Figure 11b).

Power-On Reset

The MAX5406 initiates power-on reset when Vlogic falls below 2.2 V and returns to normal operation when VLOGIC $=+2.7 \mathrm{~V}$. A power-on reset places the volume in the mute $(-90 d B)$ state and volume wipers gradually move to -20 dB over a period of 0.7 s in 2 dB steps if no zero-crossing event is detected. All other controls remain in the OdB position.

Shutdown ($\overline{\text { SHDN }}$)
The MAX5406 stores the current wiper setting of each potentiometer in shutdown mode. The wipers move to the mute position to minimize the signal out of LOUT and ROUT. Returning from shutdown mode restores all wipers to their previous settings. Button presses in shutdown are ignored.

Mute Function (MUTE)

The MAX5406 features a mute function that sets the volume typically 90 dB attenuation relative to full scale. Successive pulses on MUTE toggle its setting. Activating the mute function forces all wipers to the low side of the potentiometer chain. Deactivating the mute function returns the wipers to their previous settings.

Figure 12. Subwoofer Output Stage
$\overline{\text { MUTE }}$ is internally pulled high with a $50 \mathrm{k} \Omega$ resistor to VLOGIC.

Multiple Button Pushes
The MAX5406 ignores simultaneous presses of two or more buttons. Pushing more than one button at the same time does not change the state of the wipers. Additionally, further key presses are ignored for 50 ms after all keys have been released. The MAX5406 does not respond to any logic input until the blocking period ends.

Bias Generator The MAX5406 generates a midrail, (VDD + VSS) / 2 bias voltage, for use with the input amplifiers.
For normal single-supply operation and single-ended signals, connect R1_L, L1_L, R2_L, and L2_L to VBIAS and VSS to ground.
Enable the VBIAS generator by connecting CMSNS to VSS or leave CMSNS unconnected. Disable the VBIAS generator by forcing CMSNS to VDD. For proper operation, do not use VBIAS to power other circuitry.

Audio Processor with Pushbutton Interface

Subwoofer Output
The subwoofer output of the MAX5406 combines and filters the left and right inputs for output to a subwoofer. Choose the capacitor values to set the bandpass filter to frequencies between 15 Hz and 100 Hz .
Figure 12 shows the subwoofer output stage configuration. The subwoofer output is a monophonic signal produced by adding the left and the right input signals. The amplifier of the subwoofer output stage produces a bandpass response. Use the following formulas to determine the cutoff frequencies for the bandpass filter:

$$
\begin{aligned}
& \mathrm{f}_{\text {HIGHPASS }}=\frac{1}{2 \times \pi \times R_{-} \mathrm{S} \times \mathrm{C}_{\mathrm{C}_{-} \mathrm{S}}} \\
& \mathrm{f}_{\text {LOWPASS }}=\frac{1}{2 \times \pi \times \mathrm{R}_{\text {CSUB }} \times \mathrm{C}_{\mathrm{CSUB}}}
\end{aligned}
$$

where R_S is RLS or RRS and has the nominal value of $13.8 \mathrm{k} \Omega$, RCSUB has the nominal value of $10.6 \mathrm{k} \Omega$, and Cc_s is CCls or CCRS. The external capacitors are as shown in Figure 12.

Applications Information

Bass Boost

Some simple products may not need a variable bass tone control. It may be desirable for such products to have a bass-boost pushbutton. Tie BASSUP and $\overline{\text { BASSDN }}$ together to provide a bass-boost feature. When tied together, the bass boost is toggled between OdB and maximum by pressing BASSUP or BASSDN.

Unequal Source Levels

Audio sources input to the MAX5406 may not have the same full-scale voltage swings. Use a resistor in series with the higher voltage swing input source to reduce the gain for that input.
For example, to reduce the gain by half, add a $10 \mathrm{k} \Omega$ resistor in series with L1_H and R1_H, and a $20 \mathrm{k} \Omega$ in series with L1_L and R1_L.

Chip Information
PROCESS: BiCMOS

Audio Processor with Pushbutton Interface

Audio Processor with Pushbutton Interface

*OPTIONAL
TYPICAL APPLICATION CIRCUIT SHOWS MAX5406 INTERNAL BIAS VOLTAGE OPERATION AND AUXILLIARY INPUT MIXING.
\qquad

Audio Processor with Pushbutton Interface

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. DINENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994
2. N IS THE TOTAL NUMEER OF TERMINLS.
3. THE TERMNAL \#1 IDENTFER AND TERMINAL NUMBERNG CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETALS OF TERMNAL 11 IDENTFER ARE OPTIONAL BUT MUST BE LOCATED WITHIN
THE ZONE INDCATED. THE TERMNAL
II
IDENTFIER MAY BE ETHER A MOLD OR MARKD FEATURE
A. DIMENSION B APPUES TO MEEALIIZED TERNIIAL ANO IS MEASURED BETWEEN
4. ND and ne refer to the number of teruinals on each d and e side respectively
5. DEPOPULATION IS POSSIBLE N A SYMNETRICAL FASHION.
6. COPLANARTT APPLIES TO THE EXPOSED HEAT SINK SLWG AS WEL AS THE TERMINALS.
. DRAMNG CONFORNS TO JEDEC MO220 EXCEPT THE EXPOSED PAD DIMENSIONS O
7. WARPAGE SHALL NOT EXCEED 0.10 mm .

41 MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY

DRAWWO NOT TO SCALE

TIIE PACKAGE OUTLINE
$32,44,48,56 \mathrm{~L}$ THIN QFN, $7 \times 7 \times 0.8 \mathrm{~mm}$

n¢mown		E	2/2

Audio Processor with Pushbutton Interface

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

