Four-Channel Video Driver with SD Reconstruction Filters

The NCS2554 is a 4-channel high speed video driver with 6th order Butterworth Reconstruction filters on each channel. A first set of 3-channel has Standard Definition (SD) filters, one per channel. A fourth channel offers an extra filter driver for driving Cvbs-type video signal. The NCS2554 is in fact a combination of a triple SD video driver for YPbPr plus a single Cvbs video driver.

It is designed to be compatible with Digital-to-Analog Converters (DAC) embedded in most video processors.

To further reduce power consumption, 2 enable pins are provided one for the triple driver and another one for the single driver. All channels can accept DC- or AC-coupled signals. In case of AC-coupled inputs, the internal clamps are enabled. The outputs can drive both AC and DC coupled 150Ω loads.

Features

- 4-Channel with per Channel a Selectable Sixth-Order Butterworth 8 MHz Filter
- Transparent Clamp
- Internal Fixed Gain: $6 \mathrm{~dB} \pm 0.2$
- Integrated Level Shifter
- AC- or DC-Coupled Inputs and Outputs
- Low Quiescent Current
- Shutdown Current $42 \mu \mathrm{~A}$ Typical (Disabled)
- Each channel Capable to Drive 2 by 150Ω Loads
- Wide Operating Supply Voltage Range: +4.7 V to +5.3 V
- Robust ESD protection 8 kV
- TSSOP-14 Package
- This is a $\mathrm{Pb}-$ Free Device

Typical Application

- Set Top Box Decoder
- DVD Player / Recorder
- SDTV

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping †
NCS2554DTBR2G	TSSOP-14 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 1. NCS2554 Block Diagram

NCS2554

PIN DESCRIPTION

Pin No.	Name	Type	
1	CVBS_IN	Input	Video Input for Video Signal featuring a frequency bandwidth compatible with NTSC / PAL / SECAM Video (8 MHz) - Cvbs Channel
2	CVBS_EN	Input	Cvbs Channel Enable /Disable Function: Low = Enable, High = Disable. When left open the default state is Enable.
3	VCC	Power	Power Supply / 4.7 V to 5.3 V
4	NC	Input	Not Connected
5	SD_IN1	Input	Selectable SD Video Input 1 - SD Channel 1
6	SD_IN2	Input	Selectable SD Video Input 2 - SD Channel 2
7	SD_IN3	Input	Selectable SD Video Input 3 - SD Channel 3
8	SD_OUT3	Output	SD Video Output 3 - SD Channel 3
9	SD_OUT2	Output	SD Video Output 2 - SD Channel 2
10	SD_OUT1	Output	SD Video Output 1 - SD Channel 1
11	SD_EN	Input	SD Channel Enable/Disable Function: Low = Enable, High = Disable. When left open the default state is Enable.
12	GND	Ground	Ground
13	GND	Ground	Ground
14	CVBS_OUT	Output	Cvbs Video Output - Cvbs Channel

ATTRIBUTES

Characteristic	Value
Moisture Sensitivity (Note 1)	Level 1
Flammability Rating	Oxygen Index: 28 to 34

1. For additional information, see Application Note AND8003/D

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltages	V_{CC}	$-0.3 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5$	Vdc
Input Voltage Range	V_{I}	$-0.3 \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	Vdc
Input Differential Voltage Range	V_{ID}	$-0.3 \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	Vdc
Output Current (Indefinitely) per Channel	I_{O}	40	mA
Maximum Junction Temperature (Note 2)	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Air	$\mathrm{R}_{\text {日JA }}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
2. Power dissipation must be considered to ensure maximum junction temperature (T_{J}) is not exceeded.

Maximum Power Dissipation

The maximum power that can be safely dissipated is limited by the associated rise in junction temperature. For the plastic packages, the maximum safe junction temperature is $150^{\circ} \mathrm{C}$. If the maximum is exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the device in the "overheated" condition for an extended period can result in device burnout. To ensure proper operation, it is important to observe the derating curves.

Figure 2. Power Dissipation vs Temperature

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, inputs AC-coupled with $0.1 \mu \mathrm{~F}$, all outputs AC-coupled with 220μ F into 150Ω referenced to 400 kHz ; unless otherwise specified)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
POWER SUPPLY						
$\mathrm{V}_{\text {cc }}$	Supply Voltage Range		4.7	5.0	5.3	V
I_{CC}	Supply Current	SD Channels Selected + C vbs		40	55	mA
$\mathrm{I}_{\text {SD }}$	Shutdown Current (CVBS_EN and SD_EN High)			42	60	$\mu \mathrm{A}$

DC PERFORMANCE

Vi	Input Common Mode Voltage Range		GND		1.4	$\mathrm{~V}_{\mathrm{PP}}$
V_{IL}	Input Low Level for the Control Pins (2, 11)		0		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Level for the Control Pins (2, 11)		2.4		$\mathrm{~V}_{\mathrm{CC}}$	V
R_{pd}	Pulldown Resistors on Pins CVBS_EN and SD_EN			250		$\mathrm{k} \Omega$

OUTPUT CHARACTERISTICS

V_{OH}	Output Voltage High Level			2.8
$\mathrm{~V}_{\mathrm{OL}}$	Output Voltage Low Level		V	
I_{O}	Output Current		200	

AC ELECTRICAL CHARACTERISTICS FOR STANDARD DEFINITION CHANNELS (pin numbers (1, 14) (5, 10), (6, 9), (7, 8)) ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}_{\mathrm{PP}}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, inputs AC-coupled with $0.1 \mu \mathrm{~F}$, all outputs AC-coupled with $220 \mu \mathrm{~F}$ into 150Ω referenced to 400 kHz ; unless otherwise specified)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
AvSD	Voltage Gain	$\mathrm{V}_{\text {in }}=1 \mathrm{~V}$ - All SD Channels	5.8	6.0	6.2	dB
BW ${ }_{\text {SD }}$	Low Pass Filter Bandwidth (Note 4)	$\begin{aligned} & -1 \mathrm{~dB} \\ & -3 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 8.0 \end{aligned}$		MHz
$A_{\text {RSD }}$	Stop-band Attenuation (Notes 4 and 5)	@ 27 MHz	43	50		dB
$\mathrm{dG}_{\text {SD }}$	Differential Gain Error			0.7		\%
$\mathrm{d} \Phi_{\text {SD }}$	Differential Phase Error			0.7		-
THD	Total Harmonic Distortion	$\mathrm{V}_{\text {out }}=1.4 \mathrm{~V}_{\text {PP }} @ 3.58 \mathrm{MHz}$		0.35		\%
$\mathrm{X}_{\text {SD }}$	Channel-to-Channel Crosstalk	@ 1 MHz and $\mathrm{Vi}_{\mathrm{n}}=1.4 \mathrm{~V}_{\mathrm{PP}}$		-57		dB
SNR ${ }_{\text {SD }}$	Signal-to-Noise Ratio	NTC-7 Test Signal, 100 kHz to 4.2 MHz (Note 3)		72		dB
$\Delta \mathrm{t}_{\text {SD }}$	Propagation Delay	@ 4.5 MHz		70		ns
$\Delta \mathrm{GD}_{\text {SD }}$	Group Delay Variation	100 kHz to 8 MHz		20		ns

3. $\mathrm{SNR}=20 \times \log$ ($714 \mathrm{mV} / \mathrm{RMS}$ noise)
4. 100% of Tested ICs fit the bandwidth and attenuation tolerance at $25^{\circ} \mathrm{C}$.
5. Guaranteed by characterization.

TYPICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}_{\mathrm{PP}}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Inputs AC-coupled with $0.1 \mu \mathrm{~F}$, All Outputs AC-coupled with $220 \mu \mathrm{~F}$ into 150Ω Referenced to 400 kHz ; unless otherwise specified

Figure 3. SD Normalized Frequency Response

Figure 5. SD Channel-to-Channel Crosstalk

Figure 7. SD Propagation Delay

Figure 4. SD Passband Flatness

Figure 6. SD Normalized Group Delay

Figure 8. SD Small Signal Response

TYPICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}_{\mathrm{Pp}}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Inputs AC -coupled with $0.1 \mu \mathrm{~F}$, All Outputs AC-coupled with $220 \mu \mathrm{~F}$ into 150Ω Referenced to 400 kHz ; unless otherwise specified

Figure 9. SD Large Signal Response

Figure 10. SD V $\mathbf{C c}$ PSRR vs. Frequency

Figure 11. SD Frequency Response and Group Delay

Figure 12. SD Differential Gain

Figure 13. SD Differential Phase

APPLICATIONS INFORMATION

The NCS2554 quad video driver has been optimized for Standard video applications covering the requirements of the standards Composite video (Cvbs), S-Video, Component Video (480i/525i, 576i/625i) and related (RGB). The three SD channels have 8 MHz filters for covering standard definition-like video applications.

In the regular mode of operation each channel provides an internal voltage-to-voltage gain of 2 from input to output. This effectively reduces the number of external components required as compared to discrete approached implemented with stand alone op amps. An internal level shifter is
employed shifting up the output voltage by adding an offset of 200 mV . This prevents sync pulse clipping and allows DC-coupled output to the 150Ω video load. In addition, the NCS2554 integrates a $6^{\text {th }}$ order Butterworth filter for each. This allows rejection of the aliases or unwanted over-sampling effects produced by the video DAC. Similarly for the case of DVD recorders which use an ADC, this anti-aliasing filter (reconstruction filter) will avoid picture quality issue and will aide filtration of parasitic signals caused by EMI interference.

Figure 14. AC-Coupled Configuration at the Input and Output

A built-in diode-like clamp is used into the chip for each channel to support the AC-coupled mode of operation. The clamp is active when the input signal goes below 0 V .

The built-in clamp and level shifter allow the device to operate in different configuration modes depending on the DAC output signal level and the input common mode voltage of the video driver. When the configuration is DC -Coupled at the Inputs and Outputs the $0.1 \mu \mathrm{~F}$ and $220 \mu \mathrm{~F}$ coupling capacitors are no longer used, and the clamps are in that case inactive; this configuration provides a low cost solution which can be implemented with few external components (Figure 15).

The input is AC -coupled when either the input-signal amplitude goes over the range 0 V to 1.4 V or the video source requires such a coupling. In some circumstances it may be necessary to auto-bias signals with the addition of a pullup and pulldown resistors or only pullup resistor (Typical $7.5 \mathrm{M} \Omega$ combined with the internal $800 \mathrm{k} \Omega$ pulldown) making the clamp inactive.

The output AC-coupling configuration is advantageous for eliminating DC ground loop with the drawback of making the device more sensitive to video line or field tilt issues in the case of a too low output coupling capacitor. In
some cases it may be necessary to increase the nominal $220 \mu \mathrm{~F}$ capacitor value.

Shutdown Mode

If the enable pins are left open by default the circuit will be enabled. The Enable pin offers a shutdown function, so the NCS2554 can consequently be disabled when not used. The NCS2554's quiescent current reduces to $42 \mu \mathrm{~A}$ typical during shutdown mode.

DC-Coupled Output

The outputs of the NCS2554 can be DC-coupled to a 150Ω load (Figure 15). This has the advantage of eliminating the AC-coupling capacitors at the output by reducing the number of external components and saving space on the board. This can be a key advantage for some applications with limited space.
The problems of field tilt effects on the video signal are also eliminated providing the best video quality with optimal dynamic or peak-to-peak amplitude of the video signal allowing operating thanks to the built-in level shifter without risk of signal clipping. In this coupling configuration the average output voltage is higher than 0 V and the power consumption can be a little higher than with an AC -coupled configuration.

Figure 15. DC-Coupled Input and Output Configuration

Figure 16. Typical Application

Figure 17. NCS2554 Driving 2 SCARTS Simultaneously

Video Driving Capability

With an output current capability of 40 mA the NCS2554 was designed to be able to drive at least 2 video display loads in parallel. This type of application is illustrated Figure 16. Figure 18 (multiburst) and Figure 19 (linearity) show that the video signal can efficiently drive a 75Ω equivalent load and not degrade the video performance.

ESD Protection

All the device pins are protected against electrostatic discharge at a level of 8 kV . This feature has been considered

Figure 18. Multiburst Test with Two 150Ω Loads
with a particular attention with ESD structure able to sustain a typical value of 8 kV . This parameter is particularly important for video drivers which usually constitute the last stage in the video chain before the video output connector. The test method used follow the IEC61000-4-2 methodology. More details can be provided if requested.

Figure 19. Linearity Test with Two 150Ω Loads

PACKAGE DIMENSIONS

TSSOP-14
CASE 948G-01
ISSUE B

Notes:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
3. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252	BSC
M	0		8°	0

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Abstract

ON Semiconductor and ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

