Dual CMOS Video Amplifier ### **General Description** The MAX457 contains two unity-gain stable video amplifiers that are capable of driving 75Ω loads with a -3dB bandwidth of 70MHz. The amplifiers operate from ±5V supplies and together consume about 350mW of power. Closed loop gain is set by two external resistors. The pinout of the MAX457 follows that of conventional 8-pin, dual op amps. The amplifiers require no external compensation and because of the CMOS process offer low input bias current of typically 100pA. The isolation between the amplifiers is typically 72dB at 5MHz and differential phase and gain are 0.2 degrees and 0.5% respectively. Features - Unity-Gain Bandwidth of 70MHz - Low Input Capacitance: 4pF - No Frequency Compensation Required - Low Input Bias Current: 100pA - Directly Drives 75Ω Cables - High Isolation Between Amplifiers: 72dB at 5MHz - Low Offset Voltage: 2mV ### Applications 75Ω Cable Drivers Output Amplifiers for Video Crosspoint Switches High Speed, Low Gain Applications **Driving Flash Converters** Video Distribution Amplifiers #### Ordering Information | PART | TEMP. RANGE | PACKAGE | |-----------|----------------|--------------------| | MAX457CPA | 0°C to +70°C | 8 Lead Plastic DIP | | MAX457CSA | 0°C to +70°C | 8 Lead SO | | MAX457C/D | 0°C to +70°C | Dice | | MAX457EPA | -40°C to +85°C | 8 Lead Plastic DIP | | MAX457EJA | -40°C to +85°C | 8 Lead CERDIP | # **Typical Operating Circuit** ## Pin Configuration #### MIXIM Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. # **Dual CMOS Video Amplifier** #### **ABSOLUTE MAXIMUM RATINGS** | Total Supply Voltage (V* to V*) | Lead temperature (Soldering 10 sec) +300°C | |--|---| | Analog Input Voltage (V+ +0.3V) to (V0.3V) | Duration of Output Short Circuit to Ground Indefinite | | Storage Temperature Range65°C to +150°C | Input Current, power on or off ±50mA | | Operating Temperature Range | Continuous Total Power Dissipation at 70°C | | MAX457CPA, MAX457CSA, | Plastic DIP (derate 8.3mW/°C above 70°C) 660mW | | MAX457C/D 0°C to +70°C | CERDIP (derate 8.0mW/°C above 70°C) 640mW | | MAX457EPA, MAX457EJA40°C to +85°C | Small Outline (derate 5.9mW/°C above 70°C) 470mW | Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ELECTRICAL CHARACTERISTICS** $(V^+ = +5V, V^- = -5V, -2V \le V_{IN} \le +2V, Output Load Resistor = 150<math>\Omega$, $T_A = +25^{\circ}C$, unless otherwise noted.) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |---|-----------------------|--|-----------------|-----------------|----------------|-------------------| | Input Voltage Range | VIN | Over Temperature Range | -2 | | +2 | V | | Input Offset Voltage | Vos | | -5 | ±2 | +5 | mV | | Offset Voltage Drift | dV _{OS} /dT | | | 20 | 100 | μV/°C | | Input Bias Current | I _B | T _A = +25°C
T _A = +70°C
T _A = +85°C | | 0.1
5
15 | 1
40
100 | nA | | Input Resistance | R _{IN} | T _A = +25°C | | 10 | | GΩ | | Input Capacitance | CiN | Plastic Package | | 4 | | pF | | Open Loop Voltage Gain | Avol | $\begin{aligned} R_L &= 1000\Omega \\ R_L &= 150\Omega \\ R_L &= 75\Omega \end{aligned}$ | 200
45
25 | 300
65
35 | | V/V | | Open Loop Gain Drift
Temperature Coefficient | dA _{VOL} /dT | $R_L = 150\Omega$ | | -0.6 | | %/°C | | Common Mode Rejection Ratio | CMRR | $-2V \le V_{IN} \le +2V$ | 54 | 66 | | dB | | Power Supply Rejection
Ratio | PSRR | ±4.5V to ±5.5V | 54 | 66 | | dB | | Slew Rate | SR | (Note 1) | 150 | 300 | | V/µs | | -3dB Bandwidth | GBW1 | $A_V = 0$ dB, $R_L = 75\Omega$ (Note 1) | 50 | 70 | | MHz | | -3dB Bandwidth | GBW2 | $A_V = 6dB$, $R_L = 150\Omega$ (Note 1) | 35 | 50 | | MHz | | Differential Phase Error | DP | (Notes 1, 2) | | 0.2 | | deg | | Differential Gain Error | DG | (Notes 1, 2) | | 0.5 | | % | | Settling Time to 1% | ts | $R_L = 150\Omega$, $A_V = 6dB$ | | 50 | | ns | | Output Impedance | R _{OUT} | f = 100kHz, A _V = 0dB | | 2 | | Ω | | Full Scale Output Current | Гоит | $R_L = 150\Omega$ | ±15 | ±20 | , | mA | | Output Voltage Swing | V _{OUT} | R _L = 150Ω | ±2.1 | ±2.5 | | V | | Input Noise, DC to 50MHz | V _N | (Note 1) | | 0.15 | 0.5 | mV _{RMS} | | Isolation Between
Amplifiers | ISOL | f = 5MHz (Note 1) | 60 | 72 | | dB | | Operating Supply Voltage | V+, V- | | ±4.5 | | ±5.5 | V | | Supply Current | Is | T _A = +25°C
T _A = +85°C Both Amplifiers | 30
34 | 35
39 | 42
50 | mA | Note 1: Guaranteed by design. Note 2: Input test signal: 3.58MHz sine wave of amplitude 40 IRE superimposed on a linear ramp (0 to 100 IRE). The amplifier is operated at a gain of 2V/V while driving a 150Ω load. 140 IRE = 1.0V. # Dual CMOS Video Amplifier ### Typical Operating Characteristics #### **Detailed Description** The MAX457's dual video amplifiers are similar in design to the MAX452 single video amplifier, however, improvements have been made in gain linearity and bandwidth. The MAX457 video amplifier is similar to a transconductance amplifier that has an output current proportional to the difference of the voltages at the input terminals. That is, $$I_{OUT} = Gm \times [(V_{IN}^+) - (V_{IN}^-)]$$ where Gm is about 0.6 amps/V. The output impedance of the amplifier is about $1.1k\Omega$. This gives an unloaded voltage gain of Gm × R_{OUT} = 660V/V. This open loop gain is drastically reduced when driving conventional loads of 75 or 150Ω. Figure 1. Typical Application Figure 1 shows a typical application of one of the amplifiers of a MAX457 being used to drive a doubly terminated 75 Ω cable. The closed loop gain of the amplifier is 2.00V/V. R1 is 1.05k Ω instead of 1k Ω to make up for the low open loop gain of the MAX457. R1 can be calculated from the following equation: $$R1 = [(AG + A - G)/(G - A)] \times R2$$ where A is the closed loop gain of the amplifier, and G is the open loop gain of the amplifier (approximately equal to Gm \times R_{LOAD}). In this particular example, Gm is 0.6, R_{LOAD} is about 124 Ω [(R_{OUT} paralleled with (R1 + R2) paralleled with 150 Ω load)], and R2 is $1k\Omega$. Thus, G is $0.6 \times 124 = 74.4V/V$, and A is 2V/V (the targeted closed loop gain value). This gives a value of 1.05kΩ for R1. C1 and C2 are power supply bypass capacitors. C3 helps prevent peaking at high frequencies. This peaking results from the input capacitance of the amplifier which is driven by the relatively high impedance of the feedback resistors, R1 and R2. At 50MHz, the feedback resistors cause a substantial phase delay. Adding C3 eliminates this delay. At higher closed loop gains (about 5V/V or more), C3 serves little purpose and should be omitted. The MAX457 is unity gain stable when driving a 75Ω load. To insure that the amplifier doesn't oscillate, the load resistor should be nominally 75 × A_{VCL}, where A_{VCL} is the closed loop gain of the amplifier. Following this rule will result in a minimum amount of ringing or overshoot. Higher values may be used, but peaking of the output signal may occur in the 30 to 60MHz range. It is generally safe to use loads less than 150 \times A_{VCL}. Table 1 gives suggested loads for various closed loop gains. R2 is arbitrarily chosen to be $1k\Omega$. R1 is calculated to give the nominal closed loop gain with the specified load. Note that the gainbandwidth product increases as R_{LOAD} increases. Table 1. Gain and Load Resistor Selection | GAIN
(V/V) | f-3dB
(MHz) | R1 (Ω) | R2 (Ω) | R_{load} (Ω) | |---------------|----------------|---------------|---------------|-----------------------| | 1 | 70 | 39 | 1000 | 75 | | 2 | 50 | 1050 | 1000 | 150 | | 5 | 40 | 4170 | 1000 | 390 | | 10 | 25 | 9420 | 1000 | 750 | # **Dual CMOS Video Amplifier** If the MAX457 is used to drive a capacitive load, such as the input to a flash converter, the load capacitance should be isolated by a series resistor to limit amplifier ringing. Figure 2 shows how this is done. As a rule, the resistor should be chosen such that the RC product is 10ns or longer. This scheme needn't be used if C_{LOAD} is less than 100pF. Figure 2. Isolating a Capacitive Load ## Chip Topography #### **Package Information** For the latest package outline information, go to www.maxim-ic.com/packages. #### 8 Lead Plastic DIP (PA) $$\theta_{JA} = 120$$ °C/W $\theta_{JC} = 70$ °C/W $\theta_{JA} = 125^{\circ}\text{C/W}$ $\theta_{JC} = 55^{\circ}\text{C/W}$ #### 8 Lead Small Outline (SA) $\theta_{JA} = 170^{\circ}\text{C/W}$ $\theta_{JC} = 80^{\circ}\text{C/W}$ Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 4 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2004 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.