

20+20W STEREO AMPLIFIER WITH STAND-BY

- WIDE SUPPLY VOLTAGE RANGE
- HIGH OUTPUT POWER 28+28W TYP. MUSIC POWER 20+20W @ THD = 10%, $R_L = 4\Omega$, $V_S = 28V$
- HIGH CURRENT CAPABILITY (UP TO 3.5A)
- STAND-BY FUNCTION
- AC SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

DESCRIPTION

The TDA7262 is class AB dual Hi-Fi Audio power amplifier assembled in Multiwatt package, specilally designed for high quality stereo application as Hi-Fi music centers and TV sets.

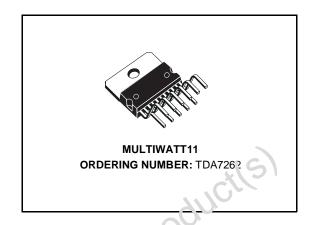
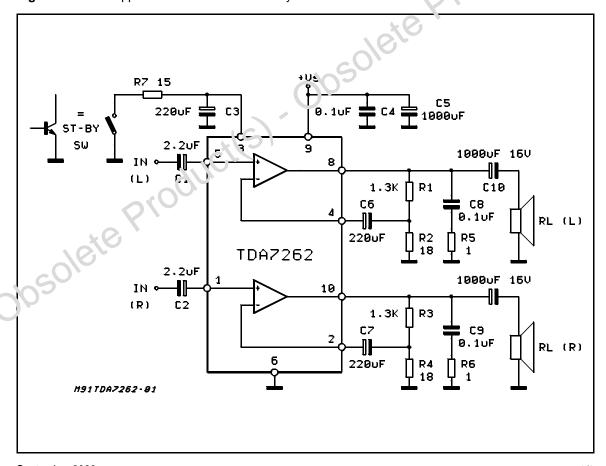
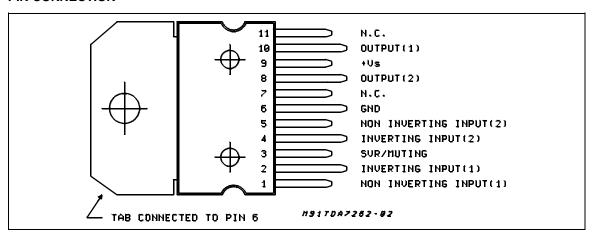
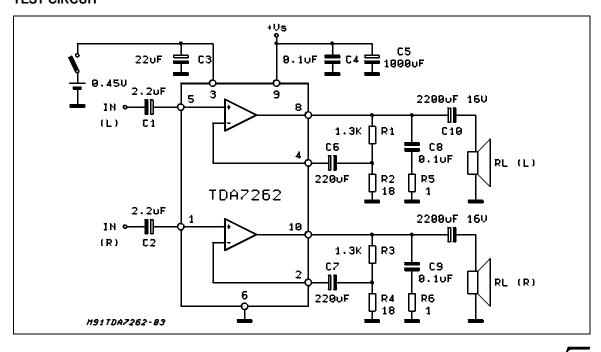



Figure 1: Stereo Application Circuit with Stand-By



September 2003


ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	35	V
lo	Output Peak Current (repetitive f > 20Hz)	3.5	Α
lo	Output Peak Current (non repetitive, t > 100μs)	4.5	Α
P _{tot}	Power Dissipation (T _{case} = 70°C)	30	W
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

PIN CONNECTION

TEST CIRCUIT

THERMAL DATA

Symbol	Description	Value	Unit	
R _{th j-case}	Thermal Resistance Junction-case	Max	2.5	°C/W

ELECTRICAL CHARACTERISTICS (Refer to the stereo test circuit, $V_S = 28V$; f = 1KHz; $T_{amb} = 25^{\circ}C$, unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		8		32	V
Vo	Quiescent Output Voltage	V _S = 32V		15.5		V
I _d	Total Quiescent Current	V _S = 28V V _S = 32V		65 70	120	mA mA
Po	Output Power (each channel)	Music Power STD rules (T = 1s) $V_S = 32V$; d = 10%; $R_L = 4\Omega$		28		W
		$d = 10\%$ $R_L = 4\Omega$ $R_L = 8\Omega$	10	22 13		W W
		$d = 1\%$ $R_L = 4\Omega$ $R_L = 8\Omega$		18 10		W W
d	Total Harmonic Distortion	$ f = 100 Hz \text{ to } 10 KHz \\ P_O = 0.1 \text{ to } 14 W; R_L = 4 \Omega \\ P_O = 0.1 \text{ to } 8 W; R_L = 8 \Omega $		0.2 0.1		%
СТ	Cross Talk	$R_L = 4\Omega$ $R_S = 100\Omega$ f = 1KHz f = 10KHz		60 50		dB dB
Vi	Input Saturation Voltage	(Vrms)	300			mV
R _i	Input Resistance	f = 1KHz; non inverting Input	70	200		KΩ
f_L	Low Frequency roll-off (-3dB)	$R_L = 4\Omega$		40		Hz
f _H	High Frequency roll-off (-3dB)	$R_L = 4\Omega$		80		KHz
G_V	Closed Loop Voltage Gain	f = 1KHz	35.5	36	36.5	dB
ΔG_V	Closed Loop Gain match			0.5		dB
e _N	Total Input Noise Voltage	A Curve; $R_S = 10K\Omega$		1.5		μV
		$f = 22Hz$ to $22KHz$; $R_S = 10K\Omega$		2.5	8	μV
SVR	Supply Voltage Rejection (each channel)	$R_S = 0$ to $10K\Omega$; $f_r = 100Hz$ $V_r = 0.5V$		55		dB
Tj	Thermal Shutdown Junction Temperature			145		°C

STAND-BY FUNCTION

V ₃	Stand-By Threshold	V _S = 32V	0.45	0.9		V
A _M	Stand-By Attenuation	$V_S = 32V; V_3 < 0.45V$	60	100		dB
I _M	Stand-By Quiescent Current	$V_S = 32V; V_3 < 0.45V$		3	5	mA

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of Figure 1. Different values can be used; the following table can help the designer.

Component	Recomm. Value	Purpose	Larger than	Smaller than	
R1 and R3	1.3ΚΩ	Close loop gain setting (*)	Increase of gain	Decrease of gain	
R2 and R4	18Ω	Close loop gain setting ()	Decrease of gain	Increase of gain	
R5 and R6	1Ω	Frequency stability	Danger of oscillations		
C1 and C2	2.2μF	Input DC decoupling	higher turn-on delay	worse turn-ON pop higer low freq. cutoff. Increase of noise	
C3	22μF (**)	- Ripple rejection - Stand-by time constant	Increase of the Switch-on time	- Degradation of SVR - worse turn-OFF pop by stand-by	
C4	100nF	Supply setting		Danger of oscillations	
C5	1000μF	Supply setting		worse turn-OFF pop	
C6 and C7	220μF	Feedback input DC decoupling			
C8 and C9	0.1μF	Frequency stability		Danger of oscillations	
C10 and C11	1000μF to 2200μF	Output DC decoupling		Higher low-frequency cut-off	

^(*) Closed loop gain must be higher than 26dB. (**) 220 μ F in case of stand-by utilization.

Figure 2: Ouput Power vs. Supply Voltage

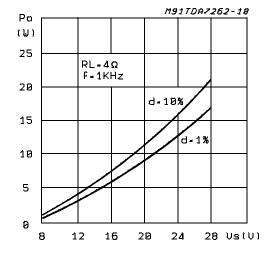


Figure 3: Ouput Power vs. Supply Voltage

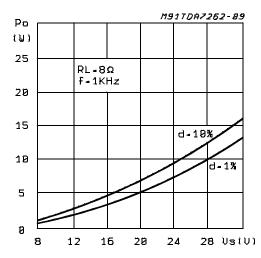


Figure 4: Distortion vs. Ouput Power

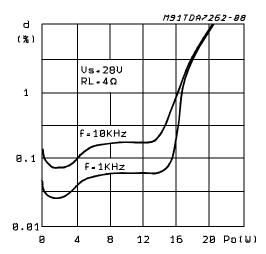


Figure 6: Quiescent Current vs. Supply Voltage

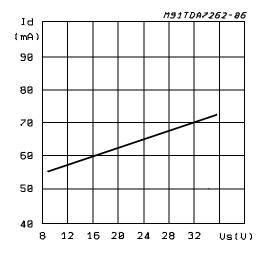


Figure 8: Output Attenuation vs. Vpin 3

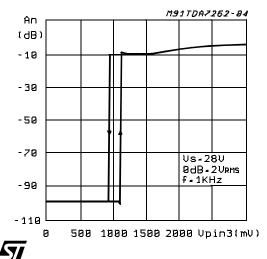


Figure 5: Distortion vs. Ouput Power

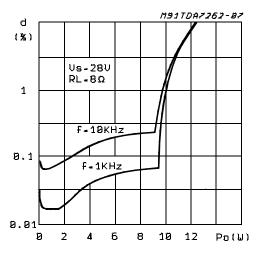


Figure 7: Supply Voltage Rejection vs. Frequency

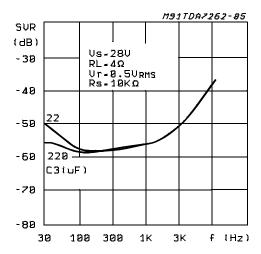


Figure 9: Total Power Dissipation & Efficiency vs. Output Power

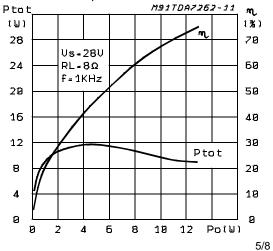
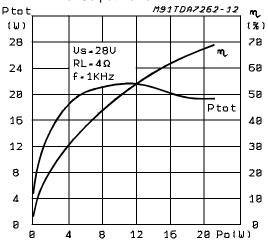



Figure 11: Total Power Dissipation & Efficiency vs. Output Power


BUILD-IN PROTECTION SYSTEMS

Thermal shut-down

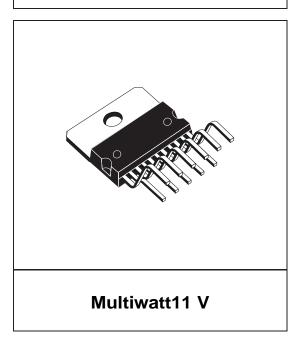
The presence of a thermal limiting circuit offers the following advantages:

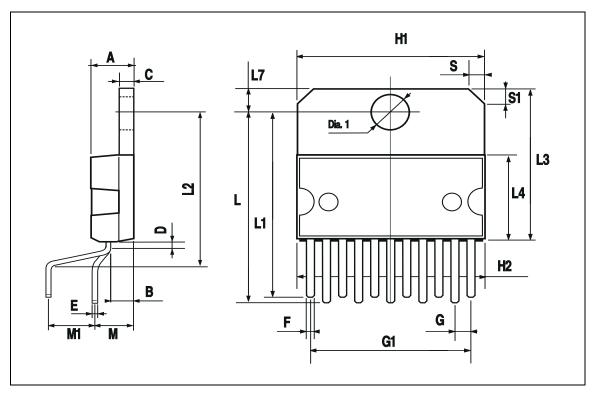
- an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
- 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature; all that happens is that P_O (and therefore Ptot) and I_O are reduced. The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); Figure 12 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Figure 12

Short circuit (AC Conditions)

The TDA7262 can withstand accidental short circuits across the speaker made by a wrong connection during normal play operation.


MOUNTING INSTRCTIONS


The power dissipated in the circuit must be removed by adding an external heatsink.

Thanks to the MULTIWATT package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

DIM.		mm			inch	
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			5			0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
E	0.49		0.55	0.019		0.022
F	0.88		0.95	0.035		0.037
G	1.45	1.7	1.95	0.057	0.067	0.077
G1	16.75	17	17.25	0.659	0.669	0.679
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.87	0.886
L2	17.4		18.1	0.685		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.73	5.08	5.43	0.186	0.200	0.214
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

4