
Abstract

General Description The MAX4885E integrates high-bandwidth analog switches and level-translating buffers to implement a complete 1:2 multiplexer for VGA signals. The device provides switching for RGB, display data channel (DDC). Horizontal and vertical synchronization (HSYNC/VSYNC) inputs feature level-shifting buffers to support low-voltage CMOS or standard TTL-compatible graphics controllers, meeting the VESA requirement of $\pm 8 \mathrm{~mA}$. DDC, consisting of SDA_ and SCL_, is a bidirectional activelevel translating switch that reduces capacitive load. The MAX4885E features high ESD protection to $\pm 15 \mathrm{kV}$ Human Body Model (HBM) on all twelve externally routed terminals. See the Pin Description section. All other pins are protected to $\pm 10 \mathrm{kV}$ Human Body Model (HBM). The MAX4885E is specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range, and is available in the 24-pin, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ TQFN package.

Applications
Notebook Computers/Docking Stations
Digital Projectors
Computer Monitors
Servers/Storage
KVM Switches
Pin Configuration

TOP VIEW

*EXPOSED PAD. CONNECTED TO GROUND OR LEAVE UNCONNECTED.

- $\pm 15 k V$ HBM ESD Protection on Externally Routed Terminals
- 1GHz Bandwidth
- Low 5Ω (typ) On-Resistance (R, G, B Signals)
- Low 6pF (typ) On-Capacitance (R, G, B Signals)
- Low R, G, B Skew -50ps (typ)
- Near Zero Power Consumption (<2 2 A)
- Ultra-Small, 24-Pin (4mm x 4mm) TQFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4885EETG +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 TQFN-EP* ${ }^{*}$

*EP = Exposed pad.
+Denotes lead-free package/RoHS-compliant package.

Typical Operating Circuit

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Ultra-Low Capacitance 1:2 VGA Switch with $\pm 15 k V$ ESD

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)
\qquad R_, G_, B_, SDA1, SCL1, SDA2, SCL2,
H1, V1, (Note 1) \qquad .-0.3V to $\mathrm{V} \mathrm{Cc}+0.3 \mathrm{~V}$
HO, VO, SDAO, SCLO, EN, SEL.........................-0.3V to VL + 0.3V
Continuous Current through RGB Switches $\pm 30 \mathrm{~mA}$
Continuous Current through DDC Switches $\pm 30 \mathrm{~mA}$
Peak Current through RGB Switches
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)................................... $\pm 90 \mathrm{~mA}$
Peak Current through DDC Switches (pulsed at 1 ms ,
10% duty cycle).
)....
.. $\pm 90 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
24-Pin TQFN (derate $27.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 2222 mW Junction to Ambient Thermal Resistance ($\theta_{J A}$) (Note 2)
\qquad
Junction to Ambient Thermal Resistance (θ_{JC}) (Note 2) 24-Pin TQFN
$.3^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: Signals exceeding $V_{C C}$ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Note 2: Package thermal resistances were obtained using the method described in JEDEC specifications. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=+2 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
VCC Quiescent Supply Current	Icc	$V_{C C}=+5.0 \mathrm{~V}$	$\mathrm{EN}=\mathrm{V}_{\mathrm{L}}$	1			$\mu \mathrm{A}$
			EN = GND				
VL Quiescent Supply Current	IVL	$V_{L}=+3.3 \mathrm{~V}$	$\mathrm{EN}=\mathrm{V}_{\mathrm{L}}$	1			$\mu \mathrm{A}$
			EN = GND				
RGB ANALOG SWITCHES							
On-Resistance	Ron	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{I} I \mathrm{~N}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=+0.7 \mathrm{~V}$ (Note 4)			6		Ω
On-Resistance Matching	$\triangle \mathrm{RON}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 0.7 \mathrm{~V}, \mathrm{I} \mathrm{IN}=-10 \mathrm{~mA}$			0.5		Ω
On-Resistance Flatness	RFLAT(ON)	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 0.7 \mathrm{~V}, \mathrm{IIN}=-10 \mathrm{~mA}$			0.5		Ω
Off-Leakage Current	IL(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=+0.3 \mathrm{~V} \text { or }+5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0 \text { or } \mathrm{V}_{\mathrm{L}} \end{aligned}$		-1		+1	$\mu \mathrm{A}$
On-Leakage Current	IL(ON)	$\begin{aligned} & V_{C C}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=+0.3 \mathrm{~V} \text { or }+5.5 \mathrm{~V}, \\ & V_{\mathrm{EN}}=\mathrm{V}_{\mathrm{L}} \end{aligned}$		-1		+1	$\mu \mathrm{A}$
HV BUFFER							
Input Voltage Low	VILHV					$\begin{gathered} 0.33 x \\ V_{L} \end{gathered}$	V
Input Voltage High	VIHHV			$\begin{gathered} 0.66 x \\ V_{L} \end{gathered}$			V
Input Logic Hysteresis	VHYST				75		mV
Input Leakage Current	IINHV	$\mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$ or V_{L}		-1		+1	$\mu \mathrm{A}$
High-Output Drive Current	IOHHV	VOHHV $\geq 3.0 \mathrm{~V}$		8.0			mA
Low-Output Drive Current	lolhV	VOLHV $\leq 0.6 \mathrm{~V}$		8.0			mA

Ultra-Low Capacitance 1:2 VGA Switch with $\pm 15 k V$ ESD

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=+2 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SDA_, SCL						
Supply Voltage	VL		2.0		5.5	V
On-Resistance	RON	$\mathrm{V}_{\mathrm{IN}}=+0.4 \mathrm{~V}, \mathrm{I} \mathrm{N}= \pm 2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=+2.0 \mathrm{~V}$		10		Ω
On-Capacitance	Con	$\mathrm{f}=100 \mathrm{kHz}$		15		pF
High-Impedance Input Leakage Current	IINHIZ	$\begin{aligned} & \text { EN = GND, VCC = +5.5V, VL = +3.6V, } \\ & \text { SCLO, SDAO, SCL1, SCL2, SDA1, SDA2 } \\ & =\text { GND or VVL (Note 5) } \end{aligned}$	-1		+1	$\mu \mathrm{A}$
Off-Input Leakage Current	IINOFF	$\mathrm{EN}=\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}}=+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{L}}-0.2 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$
CONTROL LOGIC (SEL, EN)						
Input Voltage Low	VILLOG				$\begin{gathered} 0.33 x \\ V_{L} \end{gathered}$	V
Input Voltage High	VIHLOG		$\begin{gathered} 0.66 \times \\ V_{L} \end{gathered}$			V
Input Logic Hysteresis	$\mathrm{V}_{\text {HYST }}$			75		mV
Input Leakage Current	IINLEK	$\mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$ or V_{L}	-1		+1	$\mu \mathrm{A}$
ESD PROTECTION						
ESD Protection		Human Body Model; R1, G1, B1, R2, G2, B2, SDA1, SCL1, SDA2, SCL2, H1, V1		± 15		kV
		Human Body Model; all other pins		± 10		

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=+2 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Bandwidth	$f_{\text {max }}$	$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega$	1		GHz
Insertion Loss	ILOS	$f=1 \mathrm{MHz}, \mathrm{R}_{S}=R_{L}=50 \Omega$, Figure 1	0.6		dB
Crosstalk	V_{C} T	$f=50 \mathrm{MHz}, \mathrm{R}_{S}=\mathrm{R}_{L}=50 \Omega$, Figure 1	-40		dB
Off-Capacitance	CofF	$\mathrm{f}=250 \mathrm{MHz}$	4.5		pF
On-Capacitance	Con	$\mathrm{f}=250 \mathrm{MHz}$	6.4		pF

Ultra-Low Capacitance 1:2 VGA Switch with $\mathbf{\pm 1 5 k V}$ ESD

TIMING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=+2 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

| PARAMETER | SYMBOL | CONDITIONS | MIN TYP MAX | UNITS |
| :--- | :---: | :--- | :---: | :---: | :---: |
| RGB ANALOG SWITCHES | tSKEW | Skew between any two ports: R_{-}, G_{-}, B_{-},
 Figure 2 | 50 | ps |
| Output Skew Between Ports | tpD | $R_{L}=1 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}$, Figure 2 | 15 | ns |
| HV BUFFER | | | | |

Note 3: All devices are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$. Specifications over the full temperature range are guaranteed by design. Note 4: On-resistance guarantees the low-static logic level.
Note 5: SDA_, SCL_ off-input leakage current guarantees the high-static logic level.

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}\right.$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Ultra-Low Capacitance 1:2 VGA Switch with $\mathbf{\pm 1 5 k V}$ ESD

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}\right.$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ON-RESPONSE vs. FREQUENCY

CROSSTALK vs. FREQUENCY

Ultra-Low Capacitance 1:2 VGA Switch with $\pm 15 k V$ ESD

Timing Circuits/Timing Diagrams

Figure 1. Insertion-Loss and Crosstalk

Figure 2. Propagation Delay and Skew Waveforms
\qquad

Ultra-Low Capacitance 1:2 VGA Switch with $\pm 15 k V$ ESD

Pin Description

PIN	NAME	FUNCTION
1	SDAO	SDA I/O
2	SCLO	SCL I/O
3	R0	RGB Analog I/O
4	G0	RGB Analog I/O
5	B0	RGB Analog I/O
6	H0	Horizontal Sync Input
7	V0	Vertical Sync Input
8	V_{CC}	Supply Voltage. $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$. Bypass V_{CC} to GND with a $0.1 \mu \mathrm{~F}$ or larger ceramic capacitor.
9	VL	Supply Voltage. $+2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq+5.5 \mathrm{~V}$. Bypass V_{L} to GND with a $0.1 \mu \mathrm{~F}$ or larger ceramic capacitor.
10	GND	Ground
11	H1	Horizontal Sync Output*
12	V1	Vertical Sync Output*
13	B2	RGB Analog I/O*
14	B1	RGB Analog I/O*
15	G2	RGB Analog I/O*
16	G1	RGB Analog I/O*
17	R2	RGB Analog I/O*
18	R1	RGB Analog I/O*
19	SCL2	SCL I/O*
20	SCL1	SCL I/O*
21	SDA2	SDA I/O*
22	SDA1	SDA I/O*
23	EN	Enable Input. Drive EN high for normal operation. Drive EN low to disable the device.
24	SEL	Select Input. Logic input for switching RGB and DDC swiches.
-	EP	Exposed Pad. Connect exposed pad to ground or leave unconnected.

*Terminal as $\pm 15 \mathrm{kV}$ ESD protection-Human Body Model.

Detailed Description

The MAX4885E integrates high-bandwidth analog switches and level-translating buffers to implement a complete 1:2 multiplexer for VGA signals. The device provides switching for RGB, HSYNC, VSYNC, SDA_ and SCL_ signals.
The HSYNC and VSYNC inputs feature level-shifting buffers to support TTL output logic levels from low-voltage graphics controllers. These buffered switches may be driven from as little as +2.0 V up to +5.5 V . RGB signals are routed with the same high-performance analog switches, and SDA_, SCL_ signals are voltage clamped to a diode drop less than VL. Voltage clamping provides protection and compatibility with SDA_ and SCL_ signals and low-voltage ASICs. In keyboard/video/
mouse (KVM) applications, V L is normally set to +5 V because low-voltage clamping is not required, as specified by the VESA standard.
Drive EN logic-low to shut down the MAX4885E. In shutdown mode, all switches are high impedance, providing high-signal rejection. The RGB, HSYNC, VSYNC, SDA_, and SCL_ outputs are ESD protected to $\pm 15 \mathrm{kV}$ by the Human Body Model.

RGB Switches
The MAX4885E provides three SPDT high-bandwidth switches to route standard VGA R, G, and B signals (see Table 1). The R, G, and B analog switches are identical, and any of the three switches can be used to route red, green, or blue video signals.

Ultra-Low Capacitance 1:2 VGA Switch with $\pm 15 k V$ ESD

Table 1. RGB Truth Table

EN	SEL	FUNCTION
1	0	R0 to R1 G0 to G1 B0 to B1
1	1	R0 to R2 G0 to G2 B0 to B2
0	X	R_{-}, B_{-}, and G_{-}, high impedance

$X=$ Don't care.

Table 2. HV Truth Table

EN	FUNCTION	
0	$H_{-}, V_{-}=0$	

$X=$ Don't care .

Table 3. DDC Truth Table

EN	SEL	FUNCTION
1	0	SDA0 to SDA1 SCL0 to SCL1
1	1	SDA0 to SDA2 SCL0 to SCL2
0	X	SDA_, SCL_, high impedance

$X=$ Don't care.

Abstract

Horizontal/Vertical Sync Level Shifter HSYNC/VSYNC are buffered to provide level shifting and drive capability to meet the VESA specification.

Display-Data Channel Multiplexer
The MAX4885E provides two voltage-clamped switches to route DDC signals (see Table 3). Each switch clamps signals to a diode drop less than the voltage applied on VL. Supply +3.3 V on V_{L} to provide voltage clamping for VESA $I^{2} \mathrm{C}$-compatible signals. If voltage clamping is not required, connect V_{L} to $V_{C C}$. The SDA_ and SCL_ switches are identical, and each switch can be used to route either SDA_ and SCL_ signals.

ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. Additionally, the MAX4885E is protected to $\pm 15 \mathrm{kV}$ on RGB, HSYNC, VSYNC, SDA_ and SCL_
outputs by the Human Body Model (HBM). See the Pin Description section. For optimum ESD performance, bypass each V_{CC} pin to ground with a $0.1 \mu \mathrm{~F}$ or larger ceramic capacitor.

Human Body Model (HBM)
Several ESD testing standards exist for measuring the robustness of ESD structures. The ESD protection of the MAX4885E is characterized with the Human Body Model. Figure 3 shows the model used to simulate an ESD event resulting from contact with the human body. The model consists of a 100 pF storage capacitor that is charged to a high voltage, then discharged through a $1.5 \mathrm{k} \Omega$ resistor. Figure 4 shows the current waveform when the storage capacitor is discharged into a low impedance.

ESD Test Conditions
ESD performance depends on a variety of conditions. Please contact Maxim for a reliability report documenting test setup, methodology, and results.

Applications Information

The MAX4885E provides the level shifting necessary to drive two standard VGA ports from a graphics controller as low as +2.2 V . Internal buffers drive the HSYNC and VSYNC signals to VGA standard TTL levels. The DDC multiplexer provides level shifting by clamping signals to a diode drop less than V_{L} (see the Typical Operating Circuit). Connect VL to +3.3 V for normal operation, or to V_{CC} to disable voltage clamping for DDC signals.

Power-Supply Decoupling

Bypass each $V_{C C}$ pin and V_{L} to ground with a $0.1 \mu \mathrm{~F}$ or larger ceramic capacitor as close as possible to the device.

PCB Layout

 High-speed switches such as the MAX4885E require proper PCB layout for optimum performance. Ensure that impedance-controlled PCB traces for high-speed signals are matched in length and as short as possible. Connect the exposed pad to a solid ground plane.
Chip Information

PROCESS: BiCMOS

Ultra-Low Capacitance 1:2 VGA Switch with $\pm 15 k V$ ESD

Figure 3. Human Body ESD Test Model

Figure 4. HBM Discharge Current Waveform

Functional Diagram

Ultra-Low Capacitance 1:2 VGA Switch with $\pm 15 k V$ ESD

[^0]| PACKAGE TYPE | PACKAGE CODE | DOCUMENT NO. |
| :---: | :---: | :---: |
| 24 TQFN-EP | T2444-4 | $\underline{\mathbf{2 1 - 0 1 3 9}}$ |

[^0]: For the latest package outline information and land patterns, go to www.maxim-ic.com/packages

