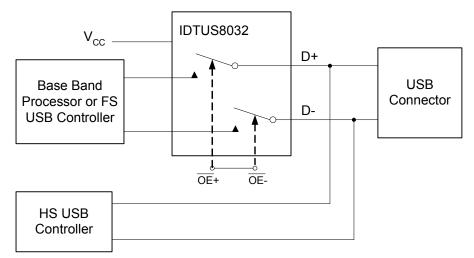
### LOW POWER DUAL SPST HI-SPEED USB 2.0 (480MBPS) SWITCH

DATASHEET

### Description

The IDTUS8032 is a low power, dual SPST 2-port hi-speed USB 2.0 switch. This part is configured as a single pole, single throw switch and is optimized for switching or isolating a hi-speed (480 Mbps) source or a hi-speed and full-speed (12 Mbps) source. The IDTUS8032 is compatible with the requirements of USB2.0 and features an extremely low ON capacitance (C<sub>ON</sub>) of 6.0 pF. The wide bandwidth of this device (>500 MHz) exceeds the bandwidth needed to pass the 3rd harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to-channel crosstalk also minimizes interference.

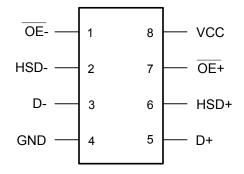
The IDTUS8032 contains circuitry on the D+/D- pins which allows the device to withstand an overvoltage condition. This device is also designed to minimize current consumption even when the control voltage applied to the OE pin is lower than the supply voltage (V<sub>CC</sub>). This feature is especially valuable to portable applications such as cell phones, allowing for direct interface with the general purpose I/Os of the baseband processor.


### Applications

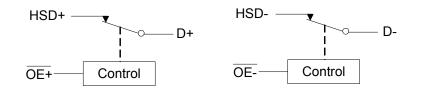
- Notebooks, PDAs
- Cellular phones, Digital cameras
- LCD monitors, TVs, Set-top Boxes

### **Application Block Diagram**

### Features


- Low On capacitance, 4.5 pF (typical)
- Low On resistance, 3.5Ω (typical)
- Low power consumption (3 mA maximum)
  - 1 mA typical ICCT over and expanded control voltage range (VIN=2.6 V, V<sub>CC</sub>=3.6 V)
- Wide -3dB bandwidth, > 500 MHz
- 8K I/O to GND ESD protection
- Power OFF protection when V<sub>CC</sub>= 0V, D+/D- pins can tolerate up to 3.6 V
- Packaged in RoHS compliant 8-pin SOIC or 8-pin MSOP




IDT™ LOW POWER DUAL SPST HI-SPEED USB 2.0 (480MBPS) SWITCH 1

## **IDTUS8032**

### Pin Assignment (8-pin SOIC and 8-pin MSOP)



### **Analog Symbol**



### **Truth Table**

| OE+, OE- | Function     |
|----------|--------------|
| Н        | Disconnect   |
| L        | D+, D- = HSD |

### **Pin Descriptions**

| Pin Name           | Pin Description    |
|--------------------|--------------------|
| OE+, OE-           | Bus switch enable. |
| D+, D-, HSD+, HSD- | Data ports.        |
| NC                 | No connect.        |

### Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDTUS8032. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. All voltages referenced to ground.

| Symbol          | Parameter                                       | Rating                                                |
|-----------------|-------------------------------------------------|-------------------------------------------------------|
| V <sub>CC</sub> | Supply Voltage                                  | -0.5 V to 5.5 V                                       |
| V <sub>S</sub>  | DC Input Voltage <sup>1</sup>                   | -0.5 V to 5.5 V                                       |
| V <sub>IN</sub> | DC Switch Voltage <sup>1</sup><br>HSD<br>D+, D- | -0.5 V to V <sub>CC</sub> to 0.3 V<br>-0.5 V to 4.6 V |
|                 | DC Input Diode Current                          | -50 mA                                                |
|                 | DC Output Current                               | 50 mA                                                 |
|                 | Storage Temperature                             | -65°C to 150°C                                        |
|                 | ESD (Human Body Mode)<br>All Pins<br>I/O to GND | 7.5 kV<br>8 kV                                        |

### Recommended Operating Conditions<sup>2</sup>

| Symbol          | Parameter              | Rating                |
|-----------------|------------------------|-----------------------|
| V <sub>CC</sub> | Supply Voltage         | 3.0 V to 3.6 V        |
| V <sub>IN</sub> | DC Switch Voltage      | 0V to V <sub>CC</sub> |
|                 | DC Input Diode Current | 0V to V <sub>CC</sub> |
|                 | Storage Temperature    | -40°C to +85°C        |

Note 1: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed. DC switch voltage may never exceed 3.6 V.

Note 2: Control input must be held HIGH or LOW and it must not float.

### **DC Electrical Characteristics**

Unless stated otherwise, typical values are at 25°C

|                          |                                                                      |                                                  |                     | T <sub>A</sub> = -40°C to +85°C |      |      |       |
|--------------------------|----------------------------------------------------------------------|--------------------------------------------------|---------------------|---------------------------------|------|------|-------|
| Symbol                   | Parameter                                                            | Conditions                                       | V <sub>CC</sub> (V) | Min.                            | Тур. | Max. | Units |
| V <sub>IK</sub>          | Clamp Diode Voltage                                                  | I <sub>IN</sub> = -18 mA                         | 3.0                 | 0                               |      | -1.2 | V     |
| V <sub>IH</sub>          | Input Voltage HIGH                                                   |                                                  | 3.0 to 3.6          | 1.3                             |      |      | V     |
|                          |                                                                      |                                                  | 3.6                 | 1.7                             |      |      | -     |
| V <sub>IL</sub>          | Input Voltage LOW                                                    |                                                  | 3.0 to 3.6          |                                 |      | 0.5  | V     |
|                          |                                                                      |                                                  | 3.6                 |                                 |      | 0.7  | -     |
| I <sub>IN</sub>          | Control Input Leakage                                                | $V_{IN} = 0V$ to $V_{CC}$                        | 3.6                 | -1.0                            |      | 1.0  | μA    |
| I <sub>OZ</sub>          | OFF State Leakage                                                    | $0 \le HSD \le V_{CC}$                           | 3.6                 | -2.0                            |      | 2.0  | μA    |
| I <sub>OFF</sub>         | Power OFF Leakage<br>Current (D+, D-)                                | $V_{IN} = 0V$ to 3.6 V<br>$V_{CC} = 0V$          | 0                   | -2.0                            |      | 2.0  | μA    |
| R <sub>ON</sub>          | Switch On Resistance <sup>1</sup>                                    | V <sub>IN</sub> = 0.4 V, I <sub>ON</sub> = -8 mA | 3.0                 |                                 | 3.5  | 10.0 | Ω     |
| ∆R <sub>ON</sub>         | Delta R <sub>ON</sub> <sup>2</sup>                                   | V <sub>IN</sub> = 0.4 V, I <sub>ON</sub> = -8 mA | 3.0                 |                                 | 0.35 |      | Ω     |
| R <sub>ON</sub> Flatness | R <sub>ON</sub> Flatness <sup>1</sup>                                | $V_{IN} = 0V$ to 1.0 V, $I_{ON} = -8$ mA         | 3.0                 |                                 | 2.0  |      | Ω     |
| I <sub>CC</sub>          | Quiescent Supply Current                                             | $V_{IN} = 0V \text{ or } V_{CC}, I_{OUT} = 0$    | 3.3                 |                                 | 300  |      | μA    |
| I <sub>ССТ</sub>         | Increase in $I_{CC}$ Current per Control voltage and $V_{CC}$ levels | $V_{IN} = 2.6 \text{ V}, V_{CC} = 3.6 \text{ V}$ | 3.6                 |                                 | 1    | 3    | mA    |

#### Notes:

- 1. Measured by the voltage drop between Dn, HSD, Dn pins at the indicated current through the switch. On Resistance is determined by the lower of the voltage on the two ports.
- 2. Guaranteed by design.

### **AC Electrical Characteristics**

Unless stated otherwise, typical values are for V<sub>CC</sub> = 3.3 V at  $25^{\circ}$ C

|                  |                                   |                                                                                   |                     | T <sub>A</sub> = -40°C to +85°C |       |      |       |
|------------------|-----------------------------------|-----------------------------------------------------------------------------------|---------------------|---------------------------------|-------|------|-------|
| Symbol           | Parameter                         | Conditions                                                                        | V <sub>CC</sub> (V) | Min.                            | Тур.  | Max. | Units |
| t <sub>ON</sub>  | Turn ON Time, OE to output        | $V_{IN} = 0.8 \text{ V}, \text{ R}_{L} = 50 \Omega, \text{ C}_{L} = 5 \text{ pF}$ | 3.0 to 3.6          |                                 | 15.0  | 30.0 | ns    |
| t <sub>OFF</sub> | Turn OFF Time, OE to output       | $V_{IN} = 0.8 \text{ V}, \text{ R}_{L} = 50 \Omega, \text{ C}_{L} = 5 \text{ pF}$ | 3.0 to 3.6          |                                 | 12.0  | 30.0 | ns    |
| t <sub>PD</sub>  | Propagation Delay <sup>1</sup>    | $R_{L} = 50\Omega, C_{L} = 5 \text{ pF}$                                          | 3.3                 |                                 | 0.25  |      | ns    |
| O <sub>IRR</sub> | OFF Isolation (non-adjacent)      | R <sub>T</sub> = 50Ω, f = 240 MHz                                                 | 3.0 to 3.6          |                                 | -35.0 |      | dB    |
| Xtalk            | Non-adjacent Channel<br>Crosstalk | R <sub>T</sub> = 50Ω f = 240 MHz                                                  | 3.0 to 3.6          |                                 | -55.0 |      | dB    |
| BW               | -3dB Bandwidth                    | $R_{T} = 50\Omega, C_{L} = 0 \text{ pF}$                                          | 3.0 to 3.6          |                                 | 500   |      | MHz   |
|                  |                                   | $R_{T} = 50\Omega, C_{L} = 5 \text{ pF}$                                          |                     |                                 | 450   |      |       |

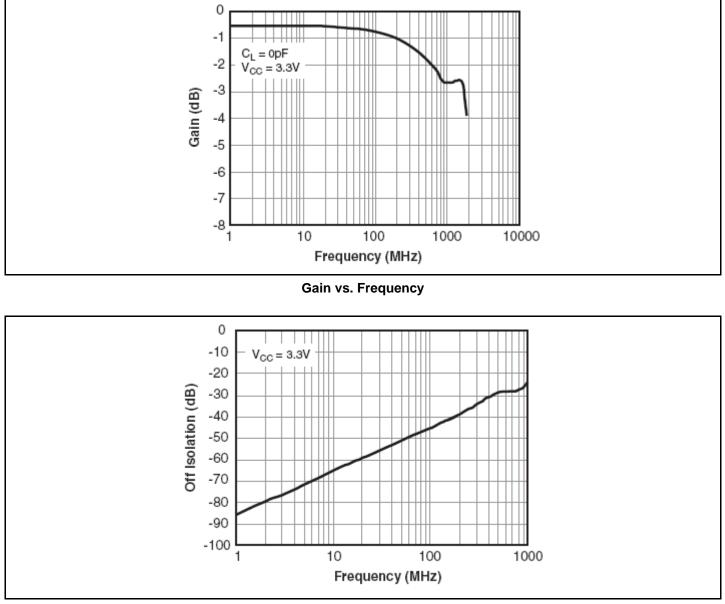
Note 1: Guaranteed by design.

IDT™ LOW POWER DUAL SPST HI-SPEED USB 2.0 (480MBPS) SWITCH 4

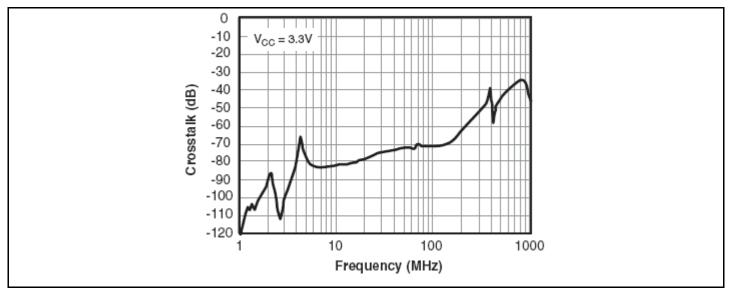
### **USB Hi-Speed Related AC Electrical Characteristics**

|                    |                                                                  |                                                                                              |                     | T <sub>A</sub> = -40°C to +85°C |      |      |       |
|--------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|---------------------------------|------|------|-------|
| Symbol             | Parameter                                                        | Conditions                                                                                   | V <sub>CC</sub> (V) | Min.                            | Тур. | Max. | Units |
| t <sub>SK(O)</sub> | Channnel-to-channel Skew <sup>1</sup>                            | C <sub>L</sub> = 5 pF                                                                        | 3.0 to 3.6          |                                 | 50.0 |      | ps    |
| t <sub>SK(P)</sub> | Skew of the Opposite Transitions of the Same Output <sup>1</sup> | C <sub>L</sub> = 5 pF                                                                        | 3.0 to 3.6          |                                 | 20.0 |      | ps    |
| tj                 | Total Jitter <sup>1</sup>                                        | $R_L = 50\Omega C_L = 5 pF,$<br>tR = tF = 500 ps at 480 Mbps<br>(PRBS = 2 <sup>15</sup> - 1) | 3.0 to 3.6          |                                 | 200  |      | ps    |

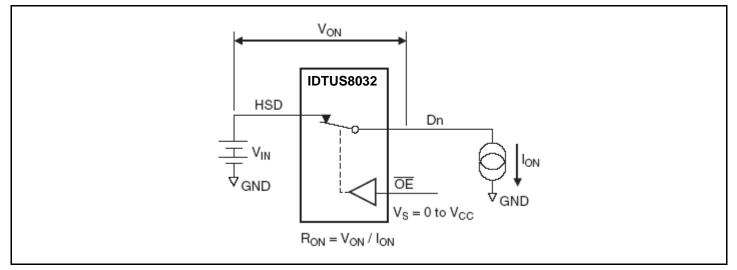
Note 1: Guaranteed by design.


### Capacitance

|                  |                                                       |                                    | T <sub>A</sub> = -40°C to +85°C |      |      |       |
|------------------|-------------------------------------------------------|------------------------------------|---------------------------------|------|------|-------|
| Symbol           | Parameter                                             | Conditions                         | Min.                            | Тур. | Max. | Units |
| C <sub>IN</sub>  | Control Pin Input Capacitance                         | $V_{CC} = 0V$                      |                                 | 1.0  |      | pF    |
| C <sub>ON</sub>  | D1 <sub>n</sub> , D2 <sub>n</sub> , Dn ON Capacitance | $V_{CC} = 3.3, \overline{OE} = 0V$ |                                 | 4.5  |      | pF    |
| C <sub>OFF</sub> | D1 <sub>n</sub> , D2 <sub>n</sub> , OFF Capacitance   | $V_{CC}$ and $\overline{OE} = 3.3$ |                                 | 1.7  |      | pF    |

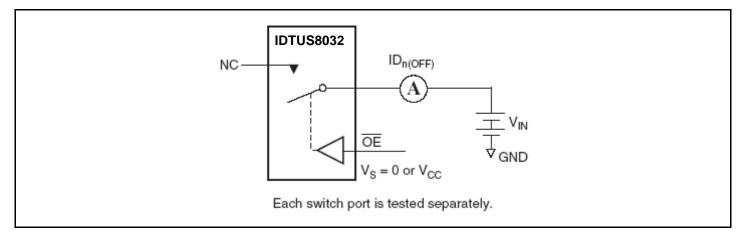

### **Thermal Characteristics**

| Parameter                                  | Symbol          | Conditions     | Min. | Тур. | Max. | Units |
|--------------------------------------------|-----------------|----------------|------|------|------|-------|
| Thermal Resistance Junction to             | $\theta_{JA}$   | Still air      |      | 150  |      | ° C/W |
| Ambient                                    | $\theta_{JA}$   | 1 m/s air flow |      | 140  |      | ° C/W |
|                                            | θ <sub>JA</sub> | 3 m/s air flow |      | 120  |      | ° C/W |
| Thermal Resistance Junction to Case        | θ <sub>JC</sub> |                |      | 40   |      | ° C/W |
| Thermal Resistance Junction to Top of Case | ΨJT             | Still air      |      | 20   |      | ° C/W |

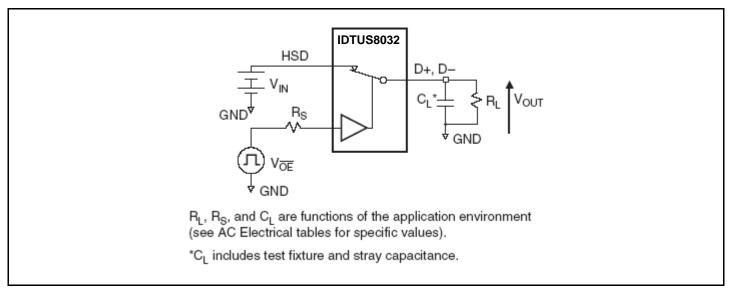

### **Test Circuits and Timing Diagrams**



**OFF** Isolation

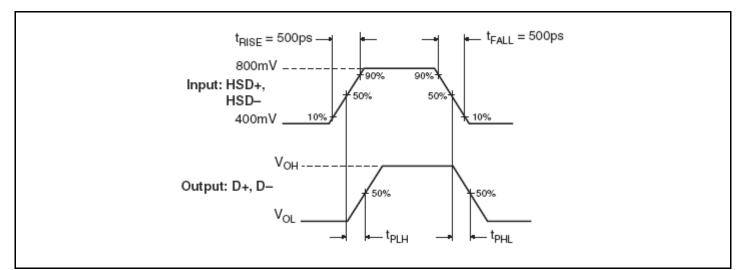




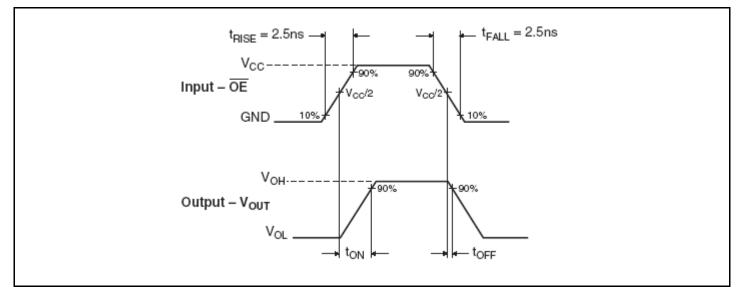




**On Resistance** 

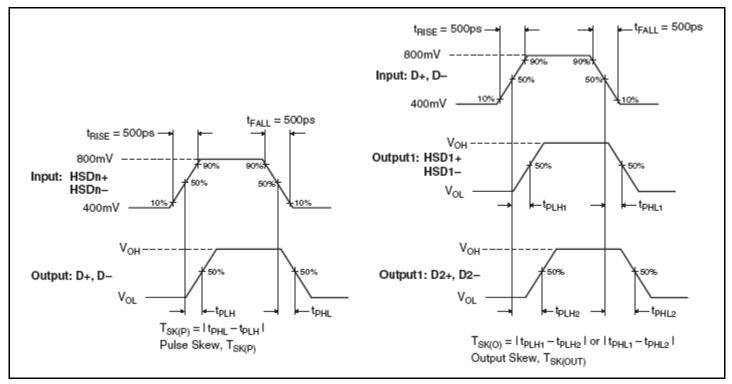
IDTUS8032 LOW POWER DUAL SPST HI-SPEED USB 2.0 (480MBPS) SWITCH



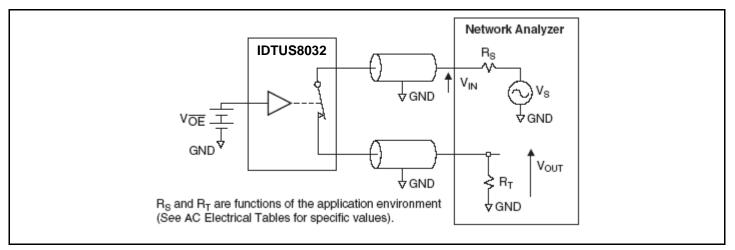

#### **OFF Leakage**



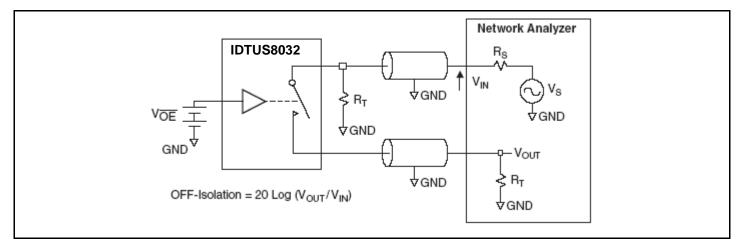

AC Test Circuit Load


#### IDTUS8032 LOW POWER DUAL SPST HI-SPEED USB 2.0 (480MBPS) SWITCH

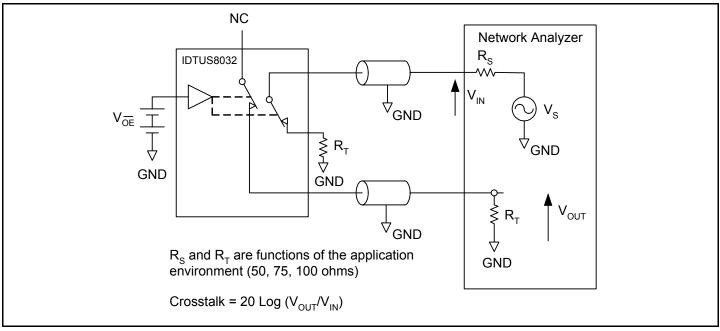



#### Switch Propagation Delay Waveforms (T<sub>PD</sub>)

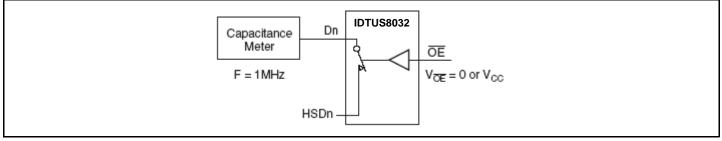



Turn ON / Turn OFF Waveform (T<sub>ON</sub> / T<sub>OFF</sub>)




**Switch Skew Tests** 

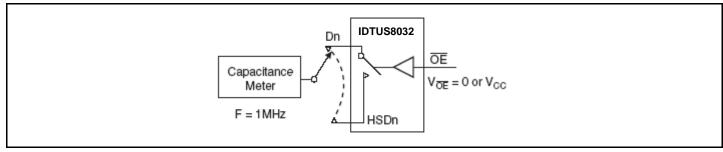



Bandwidth



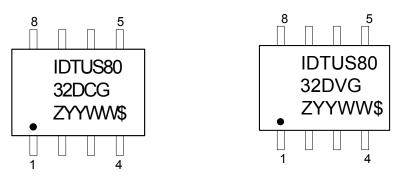
#### **Channel OFF Isolation**




#### Non-Adjacent Channel-to-Channel Crosstalk



#### **Channel ON Capacitance**


IDT™ LOW POWER DUAL SPST HI-SPEED USB 2.0 (480MBPS) SWITCH 11

IDTUS8032 LOW POWER DUAL SPST HI-SPEED USB 2.0 (480MBPS) SWITCH



#### **Channel OFF Capacitance**

### **Marking Diagrams**

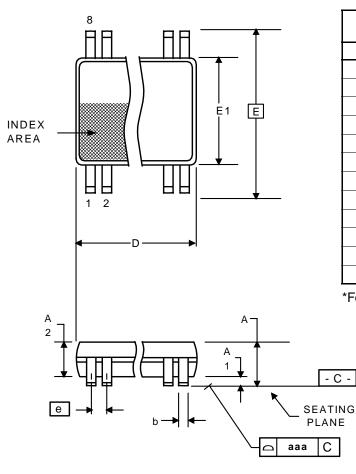


Notes:

- 1. "Z" is the device step (1 to 2 characters).
- 2. YYWW is the last two digits of the year and week that the part was assembled.
- 3. "\$" is the assembly mark code.
- 4. "G" after the two-letter package code designates RoHS compliant package.
- 5. "I" at the end of part number indicates industrial temperature range (if applicable).
- 6. Bottom marking: country of origin if not USA.

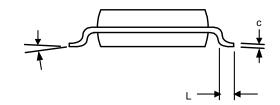
### **Thermal Characteristics for 8MSOP**

| Parameter                                 | Symbol        | Conditions | Min. | Тур. | Max. | Units |
|-------------------------------------------|---------------|------------|------|------|------|-------|
| Thermal Resistance Junction to<br>Ambient | $\theta_{JA}$ | Still air  |      | 95   |      | ° C/W |
| Thermal Resistance Junction to Case       | $\theta_{JC}$ |            |      | 48   |      | ° C/W |


### **Thermal Characteristics for 8SOIC**

| Parameter                                     | Symbol          | Conditions     | Min. | Тур. | Max. | Units |
|-----------------------------------------------|-----------------|----------------|------|------|------|-------|
| Thermal Resistance Junction to                | $\theta_{JA}$   | Still air      |      | 150  |      | ° C/W |
| Ambient                                       | $\theta_{JA}$   | 1 m/s air flow |      | 140  |      | ° C/W |
|                                               | $\theta_{JA}$   | 3 m/s air flow |      | 120  |      | ° C/W |
| Thermal Resistance Junction to Case           | θ <sub>JC</sub> |                |      | 40   |      | ° C/W |
| Thermal Resistance Junction to Top<br>of Case | $\Psi_{JT}$     | Still air      |      | 20   |      | ° C/W |

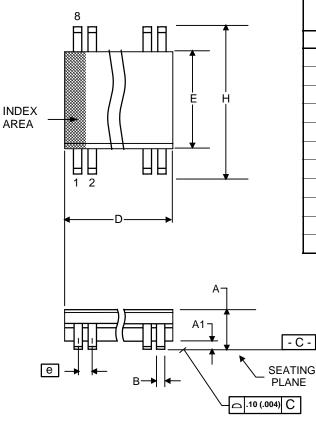
Downloaded from Elcodis.com electronic components distributor


### Package Outline and Package Dimensions (8-pin MSOP, 3.00 mm Body)

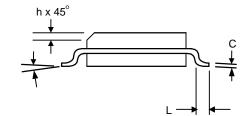
Package dimensions are kept current with JEDEC Publication No. 95



|        | Millim | neters     | Incl        | nes*    |  |
|--------|--------|------------|-------------|---------|--|
| Symbol | Min    | Max        | Min         | Max     |  |
| A      |        | 1.10       |             | 0.043   |  |
| A1     | 0      | 0.15       | 0           | 0.006   |  |
| A2     | 0.79   | 0.97       | 0.031       | 0.038   |  |
| b      | 0.22   | 0.38       | 0.008       | 0.015   |  |
| С      | 0.08   | 0.23       | 0.003       | 0.009   |  |
| D      | 3.00 E | BASIC      | 0.118       | BASIC   |  |
| E      | 4.90 E | BASIC      | 0.193 BASIC |         |  |
| E1     | 3.00 E | 3.00 BASIC |             | BASIC   |  |
| е      | 0.65   | Basic      | 0.0256      | 8 Basic |  |
| L      | 0.40   | 0.80       | 0.016       | 0.032   |  |
| α      | 0°     | 8°         | 0°          | 8°      |  |
| aaa    | -      | 0.10       | -           | 0.004   |  |


\*For reference only. Controlling dimensions in mm.




**REV F 080907** 

### Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95



|        | Millimeters |            | Inches      |       |
|--------|-------------|------------|-------------|-------|
| Symbol | Min         | Мах        | Min         | Max   |
| A      | 1.35        | 1.75       | .0532       | .0688 |
| A1     | 0.10        | 0.25       | .0040       | .0098 |
| В      | 0.33        | 0.51       | .013        | .020  |
| С      | 0.19        | 0.25       | .0075       | .0098 |
| D      | 4.80        | 5.00       | .1890       | .1968 |
| E      | 3.80        | 4.00       | .1497       | .1574 |
| е      | 1.27 BASIC  |            | 0.050 BASIC |       |
| Н      | 5.80        | 6.20       | .2284       | .2440 |
| h      | 0.25        | 0.50       | .010        | .020  |
| L      | 0.40        | 1.27       | .016        | .050  |
| α      | 0°          | <b>8</b> ° | 0°          | 8°    |



### **Ordering Information**

| Part / Order Number | Marking     | Shipping Packaging | Package    | Temperature |
|---------------------|-------------|--------------------|------------|-------------|
| US8032DCG           | see page 12 | Tubes              | 8-pin SOIC | 0 to +70° C |
| US8032DCG8          |             | Tape and Reel      | 8-pin SOIC | 0 to +70° C |
| US8032DVG           |             | Tubes              | 8-pin MSOP | 0 to +70° C |
| US8032DVG8          |             | Tape and Reel      | 8-pin MSOP | 0 to +70° C |

#### Parts that are ordered with a "G" after the two-letter package code are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

### Innovate with IDT and accelerate your future networks. Contact:

# www.IDT.com

#### **For Sales**

800-345-7015 408-284-8200 Fax: 408-284-2775

### For Tech Support

408-284-4522 www.idt.com/go/clockhelp

#### **Corporate Headquarters**

Integrated Device Technology, Inc. www.idt.com



© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA