

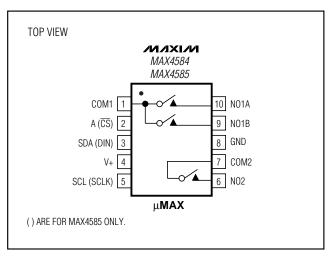
General Description

The MAX4584/MAX4585 serial-interface, programmable switches are ideal for multimedia applications. Each device contains one normally open (NO) single-pole/ single-throw (SPST) switch and one single-pole/doublethrow (SPDT) switch. The MAX4584/MAX4585 feature 65Ω on-resistance, 4Ω on-resistance matching between channels, and 5Ω on-resistance flatness. Additionally, they have off-isolation of -83dB at 20kHz and -48dB at 10MHz, with crosstalk of -84dB at 20kHz and -60dB at 10MHz.

The MAX4584 uses a 2-wire I²C[™]-compatible serial interface; the MAX4585 uses a 3-wire SPITM/QSPITM/ MICROWIRE™-compatible interface. Both devices are available in a 10-pin µMAX package and are specified for the extended-industrial (-40°C to +85°C) temperature range.

Features

- ♦ +2.7V to +5.5V Single-Supply Operation
- **♦ SPST and SPDT Switches**
- ♦ 65 Ω (max) RoN with +5V Supply
- **♦** Audio Performance
 - -83dB Off-Isolation at 20kHz
 - -84dB Crosstalk at 20kHz
- **♦ Video Performance**
 - -48dB Off-Isolation at 10MHz
 - -60dB Crosstalk at 10MHz
- **♦** Serial Interface
 - 2-Wire I²C Compatible (MAX4584)
 - 3-Wire SPI/QSPI/MICROWIRE Compatible (MAX4585)


Applications

Cellular Phones and Accessories Private Mobile Radios (PMRs) PC Multimedia Audio/Video Routing Industrial Equipment Set-Top Boxes Video Conferencing High-End Audio Equipment

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4584EUB	-40°C to +85°C	10 μMAX
MAX4585EUB	-40°C to +85°C	10 μMAX

Pin Configuration/ **Functional Diagram**

I²C is a trademark of Philips Corp. SPI/QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.

MIXIM

Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

ABSOLUTE MAXIMUM RATINGS

V+ to GND0.3V to +6V
COM_ and NO_ to GND (Note 1)0.3V to (V+ + 0.3V)
A, CS, SDA, DIN, SCL, and SCLK to GND0.3V to +6V
Continuous Current into Any Terminal±20mA
Peak Current into Any Terminal
(pulsed at 1ms, 10% duty cycle)±40mA
ESD per Method 3015.7>2kV

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
μMAX (derate 4.1mW/°C above +70°C)	330mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: Signals on NO_ or COM_ exceeding V+ or ground are clamped by internal diodes. Limit forward-diode current to maximum current rating.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V + = +5V \pm 5\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25$ °C.) (Note 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
ANALOG SWITCHES							
Analog Signal Range (Note 3)	V _{NO} , V _{COM_}			0		V+	V
On-Resistance	Ron	V+ = 4.75V, V _{NO_} = 3V,	T _A = +25°C		45	65	Ω
On resistance	TION	I _{COM} = 4mA	$T_A = T_{MIN}$ to T_{MAX}			80	22
On-Resistance Match Between Channels	$\Delta R_{ m ON}$	V+ = 4.75V, V _{NO} = 3V,	T _A = +25°C		2	4	Ω
(Note 4)	ZI ION	I _{COM} = 4mA	$T_A = T_{MIN}$ to T_{MAX}			5	22
On-Resistance	R _{FLAT}	V+ = 4.75V; V _{NO_} = 1V, 2V, 3V; I _{COM_} = 4mA	T _A = +25°C		2	5	Ω
Flatness (Note 5)	TIFLAT		$T_A = T_{MIN}$ to T_{MAX}			6.5	22
NO	NO (OFF)	V+ = 5.25V;	T _A = +25°C	-1	0.001	1	1 nA
Off-Leakage Current (Note 6)	INO(OFF)	$V_{NO_} = 1V, 4.5V;$ $V_{COM_} = 4.5V, 1V$	$T_A = T_{MIN}$ to T_{MAX}	-10		10	TIA .
COM_	loon (OFF)	V+ = 5.25V; V _{NO_} = 1V, 4.5V;	T _A = +25°C	-1	0.001	1	nA
Off-Leakage Current (Note 6)	ICOM_(OFF)	$V_{COM} = 4.5V, 1V$	$T_A = T_{MIN}$ to T_{MAX}	-10		10	TIA .
COM_	loon (on)	V + = 5.25V; $V_{NO} = 1V, 4.5V, or$	T _A = +25°C	-1	0.002	1	nA
On-Leakage Current (Note 6)	ICOM_(ON)	floating; VCOM_ = 1V, 4.5V	$T_A = T_{MIN}$ to T_{MAX}	-10		10	1 IIA
AUDIO PERFORMANCE							
Off-Isolation (Note 7)	V _{ISO(A)}	$V_A = 1V_{RMS}$, $f_{IN} = 20kl$ $R_L = 600\Omega$, Figure 8	$V_A = 1V_{RMS}$, $f_{IN} = 20kHz$, $R_L = 600\Omega$, Figure 8		-83		dB
Channel-to-Channel Crosstalk	VCT(A)	$V_A = 1V_{RMS}$, $f_{IN} = 20kI$ $R_S = 600\Omega$, Figure 8	Hz,		-84		dB

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V+ = +5V \pm 5\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25$ °C.) (Note 2)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
VIDEO PERFORMANCE	•			•			
Off-Isolation (Note 7)	V _{ISO(V)}	$V_A = 1V_{RMS}$, $f_{IN} = 10$ $R_L = 50\Omega$, Figure 8	MHz,		-48		dB
Channel-to-Channel Crosstalk	V _{CT(V)}	$V_A = 1V_{RMS}$, $f_{IN} = 10$ $R_S = 50\Omega$, Figure 8	MHz,		-60		dB
-0.1dB Bandwidth	BW	$R_S = 75\Omega$, $R_L = 1k\Omega$			5		MHz
-3dB Bandwidth	BW	$R_S = 50\Omega$, $R_L = 50\Omega$			300		MHz
NO Off-Capacitance	Coff	f _{IN} = 1MHz	$f_{IN} = 1MHz$		5		pF
DYNAMIC TIMING (Notes, 8, 11	, and Figure	5)					
T 0 T	4	V _{NO} = 2.5V,	T _A = +25°C		275	400	200
Turn-On Time	ton	$C_L = 35pF,$ $R_L = 5k\Omega$	$T_A = T_{MIN}$ to T_{MAX}			500	ns
Turn-Off Time	torr	V _{NO_} = 2.5V, C _I = 35pF,	T _A = +25°C		125	200	ns
Turr-On Time	toff	$R_L = 300\Omega$	$T_A = T_{MIN}$ to T_{MAX}			250	115
Break-Before-Make Time	t _{BBM}	V _{NO_} = 2.5V, Figure	6	10	50		ns
Charge Injection	Q	$C_L = 1.0$ nF, $V_S = 0$, $R_S = 0$, Figure 7			3		рС
POWER SUPPLY	1						
Power-Supply Voltage Range	V+			2.7		5.5	V
Supply Current	l+	All logic inputs = 0 or	· V+		5	10	μΑ

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V + = +3.0V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
ANALOG SWITCHES	l			'				
Analog Signal Range (Note 3)	V _{NO} , V _{COM_}			0		V+	V	
On-Resistance	Ron	V+ = 2.7V, $V_{NO}_{-} = 1V,$	T _A = +25°C		65	110	Ω	
On-nesisiance	HON	$I_{COM} = 4mA$	$T_A = T_{MIN}$ to T_{MAX}			130	22	
On-Resistance Match Between Channels	ΔR _{ON}	V+ = 2.7V, V _{NO_} = 1V,	T _A = +25°C		3	5	Ω	
(Note 4)	ZHON	$I_{COM} = 4mA$	$T_A = T_{MIN}$ to T_{MAX}			6	22	
On-Resistance	PELAT	V+ = 2.7V;	T _A = +25°C		3	10	Ω	
Flatness (Note 5)	R _{FLAT}	V _{NO} = 1V, 1.5V, 2V;	$T_A = T_{MIN}$ to T_{MAX}			12	22	
NO Off-Leakage	lue (ess)		T _A = +25°C	-1	0.001	1	- Λ	
Current (Notes 6, 9)	INO(OFF)	$V_{COM} = 0.5V, 3V;$ $V_{NO} = 3V, 0.5V$	$T_A = T_{MIN}$ to T_{MAX}	-10		10	nA	
COM_ Off-Leakage	loon (off)	V+ = 3.6V;	T _A = +25°C	-1	0.001	1	20	
Current (Notes 6, 9)	ICOM_(OFF)	$V_{COM} = 0.5V, 3V;$ $V_{NO} = 3V, 0.5V$	TA = TMIN to TMAX	-10		10	nA	
COM _ On-Leakage		la a tra cana	V+ = 3.6V; $V_{COM} = 0.5V, 3V;$	T _A = +25°C	-1	0.002	1	nA
Current (Notes 6, 9)	ICOM_(ON)	V_{NO} = 0.5V, 3V, or floating	$T_A = T_{MIN}$ to T_{MAX}	-10		10	IIA	
AUDIO PERFORMANCE	ı			"				
Off-Isolation (Note 7)	VISO(A)	$V_A = 0.5V_{RMS}$, $f_{IN} = 2$ Figure 8	20 kHz, $R_L = 600\Omega$,		-83		dB	
Channel-to-Channel Crosstalk	VCT(A)	$V_A = 0.5V_{RMS}$, $f_{IN} = 2$ Figure 8	$R_S = 600\Omega$,		-84		dB	
VIDEO PERFORMANCE		I					I	
Off-Isolation	V _{ISO(V)}	$V_A = 0.5V_{RMS}$, $f_{IN} = 1$ Figure 8	$OMHz$, $R_L = 50\Omega$,		-48		dB	
Channel-to-Channel Crosstalk	V _{CT(V)}	$V_A = 0.5V_{RMS}$, $f_{IN} = 1$ Figure 8	$V_A = 0.5V_{RMS}$, $f_{IN} = 10MHz$, $R_S = 50\Omega$, Figure 8		-60		dB	
-3dB Bandwidth	BW	$R_S = 50\Omega$, $R_L = 50\Omega$			200		MHz	
NO Off-Capacitance	Coff	f _{IN} = 1MHz			5		pF	
DYNAMIC TIMING (Notes 8, 11	, and Figure 5	5)		1			1	
Turn-On Time	ton	$V_{NO}_{-} = 1.5V,$ $R_{L} = 5k\Omega, C_{L} = 35pF$	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$		400	800 1000	ns	
		V _{NO} _ = 1.5V,	$T_A = +25^{\circ}C$		200	350		
Turn-Off Time	toff	$R_L = 300\Omega$, $C_L = 35p$	$T_A = T_{MIN}$ to T_{MAX}			500	ns	
Break-Before-Make Time	t _{BBM}	V _{NO} = 1.5V, Figure 6		10	100		ns	

4 ______*NIXI/*I

I/O INTERFACE CHARACTERISTICS

(V+ = +2.7V to +5.25V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at T_A = +25°C.)

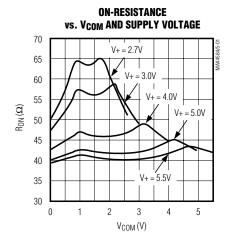
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DIGITAL INPUTS (SCLK, DIN,	DIGITAL INPUTS (SCLK, DIN, $\overline{\text{CS}}$, SCL, SDA, A)						
Input Low Voltage	VIL	V+ = 5V			0.8	V	
	VIL.	V+ = 3V			0.6	V	
Inner at I limb Voltone	Vu	V+ = 5V	3			V	
Input High Voltage	V _{IH}	V+ = 3V	2			1	
Input Hysteresis	VHYST			0.2		V	
Input Leakage Current	I _{LEAK}	Digital inputs = 0 or V+	-1	0.01	1	μΑ	
Input Capacitance	CIN			5		рF	
DIGITAL OUTPUT (SDA)							
Output Low Voltage	VoL	ISINK = 6mA			0.4	V	

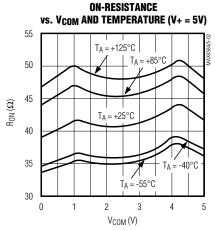
2-WIRE TIMING CHARACTERISTICS

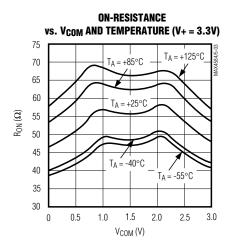
(Figures 1 and 2, V+ = +2.7V to +5.25V, f_{SCL} = 100kHz, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCL Clock Frequency	foor	V+ = 2.7V to 5.25V	0		100	kHz
SOL Clock Frequency	fscl	V+ = 4.75V to 5.25V			400	N N I Z
Bus Free Time Between Stop and Start Conditions	t _{BUF}		4.7			μs
Hold Time After Start Condition	thd:sta	The first clock is generated after this period.	4.0			μs
Stop Condition Setup Time	tsu:sto		4.0			μs
Data Hold Time	t _{HD:DAT}		0			μs
Data Setup Time	tsu:dat		250			ns
Clock Low Period	tLOW		4.7			μs
Clock High Period	thigh		4.0			μs
SCL/SDA Rise Time (Note 10)	t _R		20 + 0.1C _B		300	ns
SCL/SDA Fall Time (Note 10)	t _F		20 + 0.1C _B		300	ns

3-WIRE TIMING CHARACTERISTICS

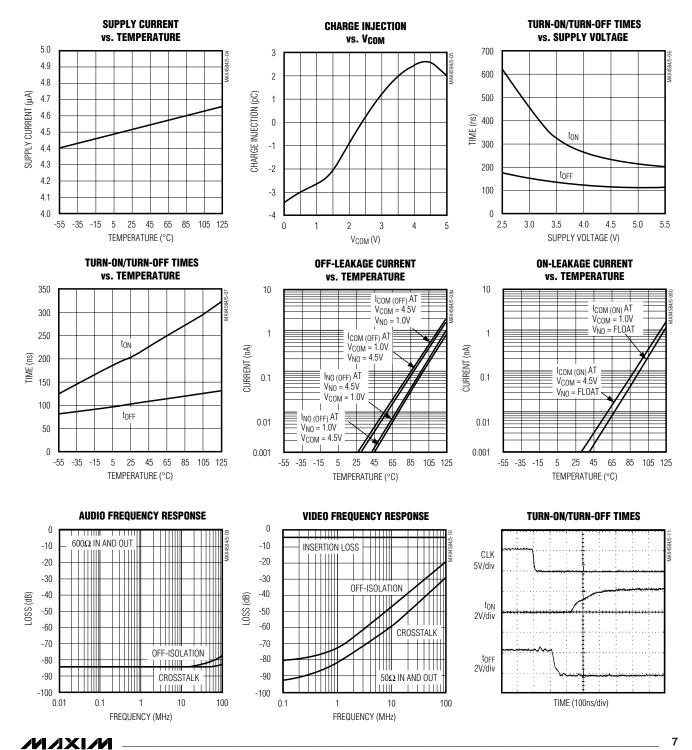

(Figures 3 and 4, V+ = +2.75V to +5.25V, f_{OP} = 2.1MHz, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at T_A = +25°C.)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Operating Fraguency	for	V+ = 2.7V to 5.25V	0		2.1	MHz	
Operating Frequency	fop	V+ = 4.75V to 5.25V			10	IVI□∠	
DIN to SCLK Setup	t _{DS}		100			ns	
DIN to SCLK Hold	tDH		0			ns	
CS Fall to SCLK Rise Setup	tcss		100			ns	
CS Rise to SCLK Hold	tcsh		0			ns	
SCLK Pulse Width Low	tcL		200			ns	
SCLK Pulse Width High	tcH		200			ns	
Rise Time (SCLK, DIN, CS)	t _R				2	μs	
Fall Time (SCLK, DIN, CS)	tF				2	μs	
CS Pulse Width High	tcsw			40		ns	


- Note 2: Algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
- Note 3: Guaranteed by design. Not subject to production testing.
- **Note 4:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 5:** Resistance flatness is defined as the difference between the maximum and minimum on-resistance values, as measured over the specified analog signal range.
- Note 6: Leakage parameters are 100% tested at maximum rated temperature and guaranteed by correlation at T_A = +25°C.
- **Note 7:** Off-isolation = 20 log (V_{COM} / V_{NO}), V_{COM} = output, V_{NO} = input to off switch.
- Note 8: All timing is measured from the clock's falling edge preceding the ACK signal for 2-wire and from the rising edge of CS for 3-wire. Turn-off time is defined at the output of the switch for a 0.5V change, tested with a 300Ω load to ground. Turn-on time is defined at the output of the switch for a 0.5V change and measured with a 5kΩ load resistor to GND. All timing is shown with respect to 20% V+ and 70% V+, unless otherwise noted.
- Note 9: Leakage testing is guaranteed by testing with a +5.25V supply.
- **Note 10:** $C_B = \text{capacitance of one bus line in pF. Tested with <math>C_B = 400 \text{pF}$.
- Note 11: Typical values are for MAX4584 devices.

Typical Operating Characteristics

 $(V + = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$



Typical Operating Characteristics (continued)

 $(V+ = +5V, T_A = +25$ °C, unless otherwise noted.)

Pin Description

	PIN	NAME	FUNCTION
MAX4584	MAX4585	NAME	FUNCTION
1	1	COM1	Analog Switch SPDT Common Terminal
2	_	А	LSB+2 of the 2-Wire Serial-Interface Address Field
_	2	CS	Chip Select of the 3-Wire Serial Interface
3	_	SDA	Data Input of the 2-Wire Serial Interface
_	3	DIN	Data Input of the 3-Wire Serial Interface
4	4	V+	Supply Voltage
5	_	SCL	Clock Input of the 2-Wire Serial Interface
_	5	SCLK	Clock Input of the 3-Wire Serial Interface
6	6	NO2	Normally Open SPST Terminal
7	7	COM2	Analog Switch SPST Common Terminal
8	8	GND	Ground
9	9	NO1B	Normally Open Terminal
10	10	NO1A	Normally Open Terminal

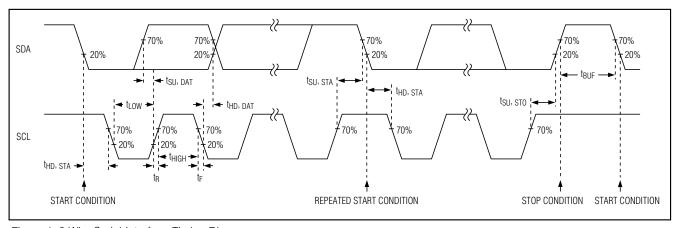


Figure 1. 2-Wire Serial-Interface Timing Diagram

Detailed Description

The MAX4584/MAX4585 are serial-interface, programmable switches. Each device contains one normally open (NO) single-pole/single-throw (SPST) switch and one single-pole/double-throw (SPDT) switch. The switches are independently controlled through the onchip serial interface. The MAX4584 uses a 2-wire I²C-compatible serial communications protocol; the MAX4585 uses a 3-wire SPI/QSPI/MICROWIRE-compatible serial communications protocol.

These devices operate from a single +2.7V to +5.5V supply and are optimized for use with an audio frequency of 20kHz and video frequencies up to 10MHz. They feature 65 Ω on-resistance, 4 Ω on-resistance matching between channels, and 5 Ω on-resistance flat-

ness. Audio off-isolation is -83dB at 20kHz, and crosstalk is at least -84dB at 20kHz. Video off-isolation is -48dB at 10MHz, and crosstalk is at least -60dB at 10MHz.

_Applications Information

Switch Control

The MAX4584/MAX4585 have a common command-bit structure; the only difference between them is the interface type (2-wire or 3-wire, respectively).

The command controls the open/closed states of the various switches. Table 1 shows the configuration of the data bits and their related switches. After a command is issued, a logic "1" in any data-bit location clos-

Table 1. Command-Bit Mapping

COMMAND BIT	SWITCH	TERMINALS	POWER-UP STATE
D7 (MSB)	Х	_	Х
D6	Х	_	Х
D5	Х	_	Х
D4	Х	_	Х
D3	Х	_	Х
D2	NO2 to COM2	6, 7	0 (Open)
D1	NO1B to COM1	9, 1	1 (Closed)
D0 (LSB)	NO1A to COM1	10, 1	0 (Open)

Table 2. Truth Table

LOGIC	NO1_ AND NO2
0	OPEN
1	CLOSED

Table 3. Address Bit Map

ADDRESS BIT (A)	ADDRESS
0	0110 1010
1	0110 1110

X = Don't care

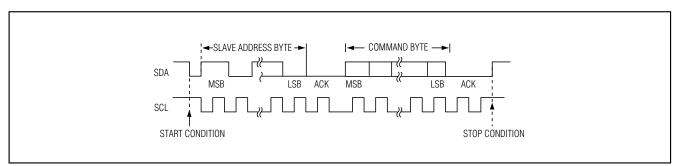


Figure 2. A Complete 2-Wire Serial-Interface Transmission

es the associated switch (Table 2). A logic "0" in any data-bit location opens the associated switch.

2-Wire Serial Interface

The MAX4584 uses a 2-wire I²C-compatible serial interface. The COM_ register uses the "SendByte" protocol, which consists of an address byte followed by a command byte (Table 1).

To address a given IC, bit A in the address byte must duplicate the value present at the A pin of that IC. The rest of the address bits must match those shown in Table 3. The command byte details are described in the *Switch Control* section.

The 2-wire serial interface requires only two I/O lines of a standard microprocessor (μ P) port. Figures 1 and 2 detail the timing diagram for signals on the 2-wire bus, and Tables 1 and 3 detail the format of the signals. The MAX4584 is a receive-only device and must be controlled by the bus master device. A bus master device communicates by transmitting the address byte of the slave device over the bus and then transmitting the desired information. Each transmission consists of a start condition, an address byte, a command byte, and finally a stop condition. The slave device acknowledges

the recognition of its address by pulling the SDA line low for one clock period after the address byte is transmitted. The slave device also issues a similar acknowledgment after the command byte.

Start and Stop Conditions

The bus master signals the beginning of a transmission with a start condition by transitioning SDA from high to low while SCL is high. When the bus master has finished communicating with the slave device, it issues a stop condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission.

Slave Address (Address Byte)

The MAX4584 uses an 8-bit-long slave address. To select a slave address, connect A to V+ or GND. The MAX4584 has two possible slave addresses, so a maximum of two of these devices may share the same address line. The slave device MAX4584 monitors the serial bus continuously, waiting for a start condition followed by an address byte. When a slave device recognizes its address (01101A10), it acknowledges that it is ready for further communication by pulling the SDA line low for one clock period.

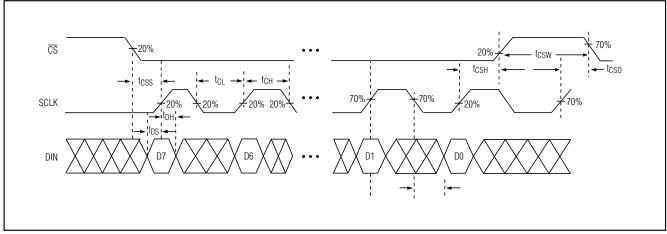


Figure 3. 3-Wire Serial-Interface Timing Diagram

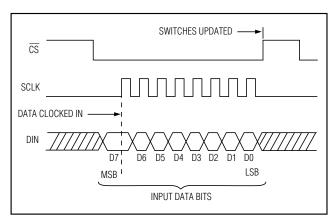


Figure 4. A Complete 3-Wire Serial Transmission

3-Wire Serial Interface

The MAX4585 3-wire serial interface is SPI/QSPI/MICROWIRE compatible. An active-low chipselect (\overline{CS}) input enables the device to receive data for the serial input (DIN). Data is clocked in on the rising edge of the serial-clock (SCLK) signal. A total of 8 bits are needed in each write cycle. The first bit clocked into the MAX4585 is the command byte's MSB; the last bit clocked in is the data byte's LSB. The first 5 bits of the command byte are "don't care." While shifting data, the device remains in its original configuration. After all 8 bits are clocked into the input shift register, a rising edge on \overline{CS} latches the data into the MAX4585's internal registers, initiating the device's change of state. Figures 3 and 4 detail the 3-wire protocol, and Table 1 details the command byte format.

Addressable Serial Interface

To program several MAX4585s individually using a single μP , connect DIN of each MAX4585 together and control \overline{CS} on each MAX4585 separately. To select a particular device, drive the corresponding \overline{CS} low, clock in the 8-bit command, then drive \overline{CS} high to execute the command. Typically, only one MAX4585 is addressed at a time.

Power-Up State

The MAX4584/MAX4585 feature a preset power-up state. See Table 1 to determine the power-up state of these devices.

_Chip Information

TRANSISTOR COUNT: 2259

Test Circuits/Timing Diagrams

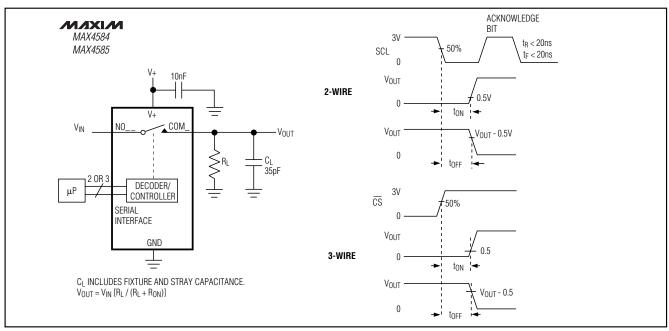


Figure 5. Switching Time



Figure 6. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

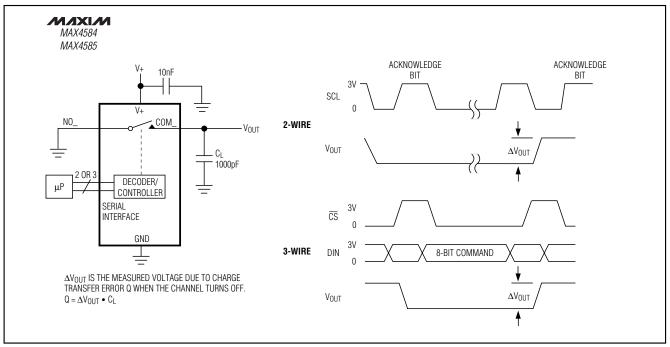


Figure 7. Charge Injection

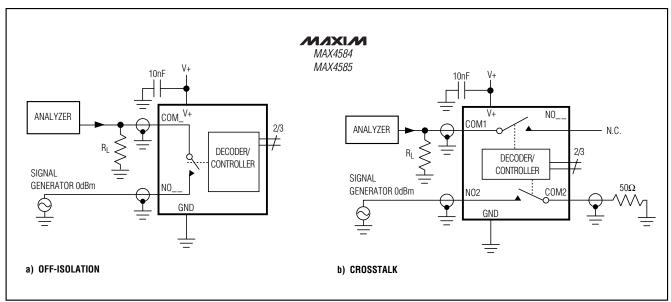


Figure 8. Off-Isolation and Crosstalk

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.