

CMOS Low Voltage 4 Ω Quad SPST Switches

ADG711/ADG712/ADG713

FEATURES

1.8 V to 5.5 V Single Supply Low On Resistance (2.5 Ω Typ) Low On Resistance Flatness –3 dB Bandwidth > 200 MHz Rail-to-Rail Operation 16-Lead TSSOP and SOIC Packages Fast Switching Times

t_{ON} 16 ns t_{OFF} 10 ns

Typical Power Consumption (< 0.01 μ W) TTL/CMOS Compatible

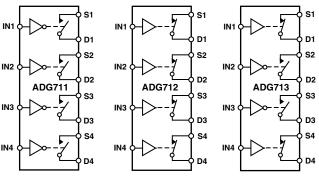
APPLICATIONS

USB 1.1 Signal Switching Circuits
Cell Phones
PDAs
Battery-Powered Systems
Communication Systems
Sample Hold Systems
Audio Signal Routing
Video Switching
Mechanical Reed Relay Replacement

GENERAL DESCRIPTION

The ADG711, ADG712, and ADG713 are monolithic CMOS devices containing four independently selectable switches. These switches are designed on an advanced submicron process that provides low power dissipation yet gives high switching speed, low on resistance, low leakage currents, and high bandwidth.

They are designed to operate from a single 1.8 V to 5.5 V supply, making them ideal for use in battery-powered instruments and with the new generation of DACs and ADCs from Analog Devices. Fast switching times and high bandwidth make the parts suitable for switching USB 1.1 data signals and video signals.


The ADG711, ADG712, and ADG713 contain four independent single-pole/single-throw (SPST) switches. The ADG711 and ADG712 differ only in that the digital control logic is inverted. The ADG711 switches are turned on with a logic low on the appropriate control input, while a logic high is required to turn on the switches of the ADG712. The ADG713 contains two switches whose digital control logic is similar to the ADG711, while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when ON. The ADG713 exhibits break-before-make switching action.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

The ADG711/ADG712/ADG713 are available in 16-lead TSSOP and 16-lead SOIC packages.

PRODUCT HIGHLIGHTS

- 1. 1.8 V to 5.5 V Single-Supply Operation. The ADG711, ADG712, and ADG713 offer high performance and are fully specified and guaranteed with 3 V and 5 V supply rails.
- 2. Very Low R_{ON} (4.5 Ω max at 5 V, 8 Ω max at 3 V). At supply voltage of 1.8 V, R_{ON} is typically 35 Ω over the temperature range.
- 3. Low On Resistance Flatness.
- 4. −3 dB Bandwidth >200 MHz.
- Low Power Dissipation. CMOS construction ensures low power dissipation.
- 6. Fast t_{ON}/t_{OFF}.
- Break-Before-Make Switching.
 This prevents channel shorting when the switches are configured as a multiplexer (ADG713 only).
- 8. 16-Lead TSSOP and 16-Lead SOIC Packages.

Fax: 781/326-8703 © 2004 Analog Devices, Inc. All rights reserved.

$\label{eq:add_specifications} \textbf{ADG711/ADG712/ADG713-SPECIFICATIONS}^{1~(V_{DD}~=~+5~V~\pm~10\%,~GND~=~0~V.~All~specifications}_{-40°C~to~+85°C~unless~otherwise~noted.)}$

	B Version			
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH	123 0	.03 G	Cint	Test conditions, comments
Analog Signal Range		0 V to V_{DD}	V	
On Resistance (R _{ON})	2.5	O V to VDD	ν Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA};$
On Resistance (RON)	4	4.5	Ω max	Test Circuit 1
On Resistance Match Between	1	0.05	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
Channels (ΔR_{ON})		0.3	Ω max	, , , , , , , , , , , , , , , , , , ,
On Resistance Flatness $(R_{FLAT(ON)})$	0.5		Ω typ	$V_{S} = 0 \text{ V to } V_{DD}, I_{S} = -10 \text{ mA}$
(11211(014))		1.0	Ω max	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LEAKAGE CURRENTS				$V_{\rm DD} = +5.5 \text{ V};$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$
	±0.1	± 0.2	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$
	±0.1	± 0.2	nA max	Test Circuit 2
Channel ON Leakage I_D , I_S (ON)	±0.01		nA typ	$V_S = V_D = 1 \text{ V, or } 4.5 \text{ V;}$
	±0.1	±0.2	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005	±0.1	μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	μA max	
DYNAMIC CHARACTERISTICS ²	1,			D = 200 O C = 25 F
t_{ON}	11	16	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$,
†	6	10	ns max	$V_S = 3 V$; Test Circuit 4 $R_L = 300 \Omega$, $C_L = 35 pF$,
$t_{ m OFF}$		10	ns typ ns max	$V_S = 3 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _D	6	10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$,
(ADG713 Only)		1	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$; Test Circuit 5
Charge Injection	3		pC typ	$V_S = 2 V; R_S = 0 \Omega, C_L = 1 nF;$
,				Test Circuit 6
Off Isolation	-58		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-78		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 7
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; Test Circuit 8
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 9
C_{S} (OFF)	10		pF typ	
C_D (OFF)	10		pF typ	
C_D , C_S (ON)	22		pF typ	
POWER REQUIREMENTS				$V_{\rm DD} = +5.5 \text{ V}$
$ m I_{DD}$	0.001		μA typ	Digital Inputs = 0 V or 5 V
		1.0	μA max	

NOTES

¹Temperature range: B Version: −40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

 $\label{eq:specifications} \textbf{SPECIFICATIONS}^{1} \ (\textbf{V}_{DD} = +3 \ \textbf{V} \ \pm \ 10\%, \ \textbf{GND} = 0 \ \textbf{V}. \ \textbf{All specifications} \ -40^{\circ} \textbf{C} \ \text{to} \ +85^{\circ} \textbf{C} \ \text{unless otherwise noted.})$

		ersion -40°C to		T 0 11 10
Parameter	+25°C	+85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V	
On Resistance (R _{ON})	5	5.5	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA};$
		8	Ω max	Test Circuit 1
On Resistance Match Between	0.1	0.0	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
Channels (ΔR_{ON})		0.3	Ω max	V = 0 V += V
On Resistance Flatness (R _{FLAT(ON)})		2.5	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS				$V_{\rm DD} = +3.3 \text{ V};$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
	±0.1	± 0.2	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
	±0.1	± 0.2	nA max	Test Circuit 2
Channel ON Leakage I_D , I_S (ON)	±0.01	100	nA typ	$V_{S} = V_{D} = 1 \text{ V, or 3 V;}$
	±0.1	±0.2	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.4	V max	
Input Current				
I_{INL} or I_{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	μA max	
DYNAMIC CHARACTERISTICS ²				
t_{ON}	13		ns typ	$R_L = 300 \Omega, C_L = 35 pF,$
		20	ns max	$V_S = 2 V$; Test Circuit 4
$t_{ m OFF}$	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF,$
		12	ns max	$V_S = 2 V$; Test Circuit 4
Break-Before-Make Time Delay, t _D	7	•	ns typ	$R_L = 300 \Omega, C_L = 35 pF,$
(ADG713 Only) Charge Injection	3	1	ns min	$V_{S1} = V_{S2} = 2 \text{ V}$; Test Circuit 5
Charge Injection	3		pC typ	$V_S = 1.5 \text{ V}; R_S = 0 \Omega, C_L = 1 \text{ nF};$ Test Circuit 6
Off Isolation	-58		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-78		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
			uz typ	Test Circuit 7
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
				Test Circuit 8
Bandwidth -3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 9
$C_{S}(OFF)$	10		pF typ	
C_D (OFF)	10		pF typ	
$C_D, C_S(ON)$	22		pF typ	
POWER REQUIREMENTS				$V_{\rm DD} = +3.3 \text{ V}$
I_{DD}	0.001		μA typ	Digital Inputs = 0 V or 3 V
		1.0	μA max	

REV. A -3-

¹Temperature range: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V _{DD} to GND0.3 V to +6 V
Analog, Digital Inputs ² 0.3 V to V_{DD} +0.3 V or
30 mA, Whichever Occurs First
Continuous Current, S or D
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle max)
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature
TSSOP Package, Power Dissipation 430 mW
θ_{IA} Thermal Impedance
θ_{IC} Thermal Impedance

SOIC Package, Power Dissipation 52	0 mW
θ_{JA} Thermal Impedance	°C/W
$\theta_{\rm JC}$ Thermal Impedance	2°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C
ESD	. 2 kV

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION_

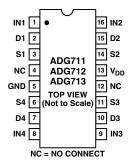
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG711/ADG712/ADG713 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG711BR	−40°C to +85°C	Standard Small Outline (SOIC)	R-16
ADG711BR-REEL	−40°C to +85°C	Standard Small Outline (SOIC)	R-16
ADG711BR-REEL7	−40°C to +85°C	Standard Small Outline (SOIC)	R-16
ADG711BRU	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16
ADG711BRU-REEL	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16
ADG711BRU-REEL7	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16
ADG712BR	−40°C to +85°C	Standard Small Outline (SOIC)	R-16
ADG712BR-REEL	−40°C to +85°C	Standard Small Outline (SOIC)	R-16
ADG712BR-REEL7	−40°C to +85°C	Standard Small Outline (SOIC)	R-16
ADG712BRU	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16
ADG712BRU-REEL	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16
ADG712BRU-REEL7	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16
ADG712BRUZ*	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16
ADG712BRUZ-REEL*	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16
ADG712BRUZ-REEL7*	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16
ADG713BR	−40°C to +85°C	Standard Small Outline (SOIC)	R-16
ADG713BR-REEL	−40°C to +85°C	Standard Small Outline (SOIC)	R-16
ADG713BR-REEL7	−40°C to +85°C	Standard Small Outline (SOIC)	R-16
ADG713BRU	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16
ADG713BRU-REEL	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16
ADG713BRU-REEL7	−40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16

^{*}Z = Pb-free part.

–4– REV. A


Table I. Truth Table (ADG711/ADG712)

ADG711 In	ADG712 In	Switch Condition
0	1	ON
1	0	OFF

Table II. Truth Table (ADG713)

Logic	Switch 1, 4	Switch 2, 3
0	OFF ON	ON OFF

PIN CONFIGURATION (TSSOP/SOIC)

TERMINOLOGY

$\overline{V_{DD}}$	Most positive power supply potential. Ground (0 V) reference.	t _{OFF}	Delay between applying the digital control input and the output switching off.
S	Source terminal. May be an input or output.	t_{D}	"OFF" time or "ON" time measured
D	Drain terminal. May be an input or output.	D	between the 90% points of both switches,
IN	Logic control input.		when switching from one address state to
R_{ON}	Ohmic resistance between D and S.	C . 11	another. (ADG713 only).
$\Delta R_{\rm ON}$	On resistance match between any two channels, i.e., R_{ON} max $-R_{ON}$ min.	Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
$R_{FLAT(ON)}$	Flatness is defined as the difference between the maximum and minimum value of on	Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
	resistance as measured over the specified analog signal range.	Charge	A measure of the glitch impulse transferred
I _S (OFF)	Source leakage current with the switch "OFF."	Injection	from the digital input to the analog output during switching.
I_D (OFF)	Drain leakage current with the switch "OFF."	Bandwidth	The frequency at which the output is attenu-
I_D , I_S (ON)	Channel leakage current with the switch "ON."		ated by 3 dB.
$V_{D}(V_{S})$	Analog voltage on terminals D, S.	On Response	The frequency response of the "ON" switch.
C_{S} (OFF)	"OFF" switch source capacitance.	On Loss	The voltage drop across the "ON" switch,
C_D (OFF)	"OFF" switch drain capacitance.		seen on the on response vs. frequency plot as
$C_D, C_S(ON)$	"ON" switch capacitance.		how many dBs the signal is away from
t_{ON}	Delay between applying the digital control input and the output switching on.		0 dB at very low frequencies.

REV. A -5-

ADG711/ADG712/ADG713 - Typical Performance Characteristics

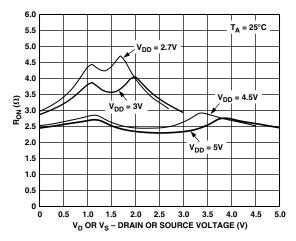


Figure 1. On Resistance as a Function of V_D (V_S)

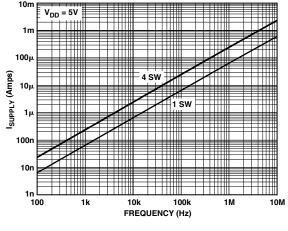


Figure 4. Supply Current vs. Input Switching Frequency

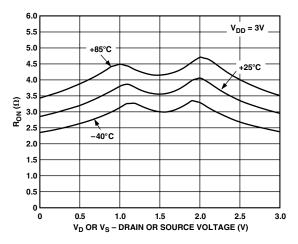


Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 3 \ V$

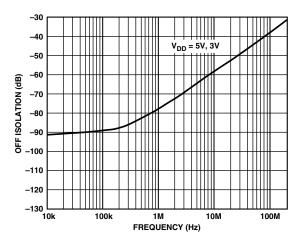


Figure 5. Off Isolation vs. Frequency

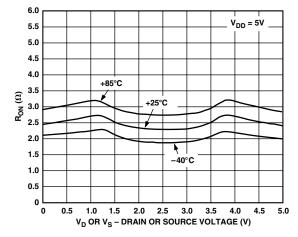


Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 5 \ V$

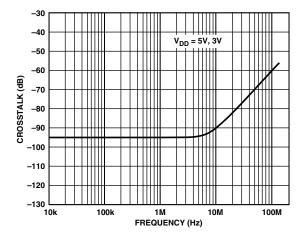
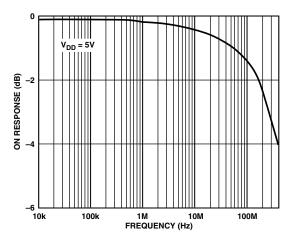



Figure 6. Crosstalk vs. Frequency

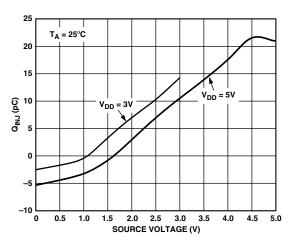
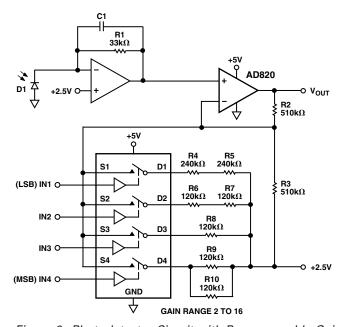
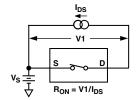
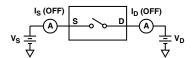


Figure 8. Charge Injection vs. Source Voltage

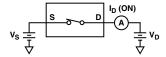
APPLICATIONS

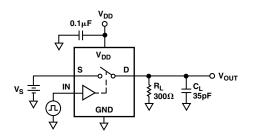
Figure 9 illustrates a photodetector circuit with programmable gain. An AD820 is used as the output operational amplifier. With the resistor values shown in the circuit, and using different combinations of the switches, gain in the range of 2 to 16 can be achieved.

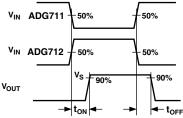




Figure 9. Photodetector Circuit with Programmable Gain

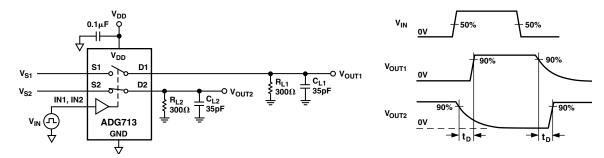
REV. A -7-


Test Circuits

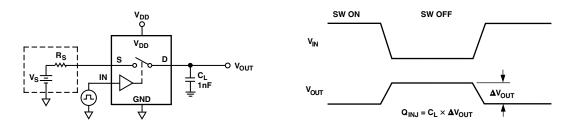

Test Circuit 1. On Resistance

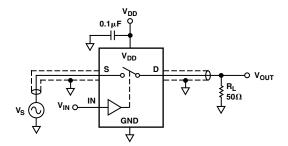


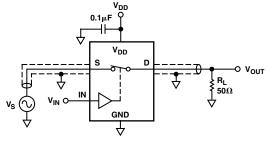
Test Circuit 2. Off Leakage

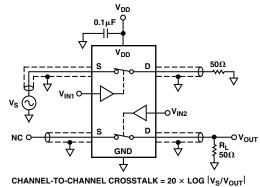


Test Circuit 3. On Leakage




Test Circuit 4. Switching Times

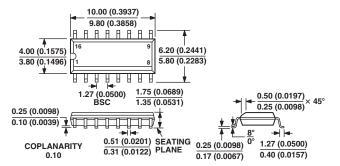

Test Circuit 5. Break-Before-Make Time Delay, t_D


Test Circuit 6. Charge Injection

Test Circuit 7. Off Isolation

Test Circuit 9. Bandwidth

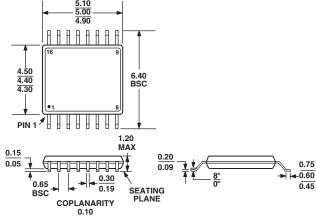
OTATIVEE TO OTATIVEE OTTOO TALK = 20 × 200 (15) 100[]


Test Circuit 8. Channel-to-Channel Crosstalk

REV. A -9-

OUTLINE DIMENSIONS

16-Lead Standard Small Outline Package [SOIC] Narrow Body (R-16)


Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)

Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-153AB

Revision History

Location	Page
3/04—Data Sheet changed from REV. 0 to REV. A.	
Added APPLICATIONS	1
Changes to ORDERING GUIDE	4
Updated OUTLINE DIMENSIONS	10

REV. A -11-