

0.5 Ω CMOS 1.65 V to 3.6 V **Dual SPDT/2:1 MUX**

ADG836L

FEATURES

 0.5Ω typical on resistance 0.8 Ω maximum on resistance at 125°C 1.65 V to 3.6 V operation Automotive temperature range: -40°C to +125°C Guaranteed leakage specifications up to 125°C High current carrying capability: 300 mA continuous Rail-to-rail switching operation Fast switching times <20 ns Typical power consumption: <0.1 μW

APPLICATIONS

Cellular phones PDAs MP3 players Power routing Battery-powered systems PCMCIA cards **Modems** Audio and video signal routing **Communication systems**

GENERAL DESCRIPTION

The ADG836L is a low voltage CMOS device containing two independently selectable single-pole, double-throw (SPDT) switches. This device offers ultralow on resistance of less than $0.8~\Omega$ over the full temperature range. The ADG836L is fully specified for 3.3 V, 2.5 V, and 1.8 V supply operation.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG836L exhibits break-before-make switching action.

The ADG836L is available in a 10-lead package.

FUNCTIONAL BLOCK DIAGRAM

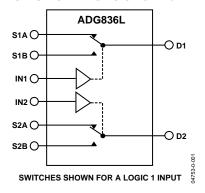


Figure 1.

PRODUCT HIGHLIGHTS

- Less than 0.8 Ω over full temperature range of -40°C to +125°C.
- Single 1.65 V to 3.6 V operation.
- Compatible with 1.8 V CMOS logic.
- High current handling capability (300 mA continuous current at 3.3 V).
- Low THD + N (0.02% typ).
- Small 10-lead MSOP package.

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

© 2004 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Specifications
Absolute Maximum Ratings
Truth Table
Pin Terminology 7
Typical Performance Characteristics
Test Circuits
Outline Dimensions
Ordering Guide14
REVISION HISTORY
5/04—Data Sheet Changed from Rev. 0 to Rev. A Updated Ordering Guide
4/04—Revision 0: Initial Version

SPECIFICATIONS

Table 1. V_{DD} = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted.¹

Parameter	+25°C	–40°C – +85°C	–40°C – +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{\text{DD}}$	V	$V_{DD} = 2.7 \text{ V}$
On Resistance (RoN)	0.5			Ωtyp	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
	0.65	0.75	0.8	Ω max	(Figure 18)
On Resistance Match between Channels (ΔR_{ON})	0.04	0.075	0.08	Ω typ $Ω$ max	$V_{DD} = 2.7 \text{ V}, V_s = 0.65 \text{ V}, I_s = 10 \text{ mA}$
On Resistance Flatness (R _{FLAT (ON)})	0.1			Ωtyp	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
		0.15	0.16	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 3.6 \text{ V}$
Source Off Leakage I₅ (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/3.3 \text{ V}, V_D = 3.3 \text{ V}/0.6 \text{ V}$
_	±1	±10	±100	nA max	(Figure 19)
Channel On Leakage ID, Is (ON)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 3.3 \text{ V (Figure 20)}$
5	±1	±15	±120	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	1 1
C _{IN} , Digital Input Capacitance	4			pF typ	
DYNAMIC CHARACTERISTICS ²				F: -7F	
ton	21			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
CON	26	28	29	ns max	$V_S = 1.5 \text{ V/O V (Figure 21)}$
toff	4	20	2,	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
COLL	7	8	9	ns max	$V_S = 1.5 \text{ V (Figure 21)}$
Break-before-Make Time Delay (t _{BBM})	17	Ü		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
			5	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V (Figure 22)}$
Charge Injection	40			pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF (Figure 23)}$
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$ (Figure 24)
Channel-to-Channel Crosstalk	-90			dB typ	S1A–S2A/S1B–S2B (Figure 27)
				,,	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
	-67			dB typ	S1A–S1B/S2A–S2B (Figure 26)
					$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
Total Harmonic Distortion (THD + N)	0.02			%	$R_L = 32 \Omega$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, $V_S = 2 \text{ V p-p}$
Insertion Loss	-0.05			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$ (Figure 25)
–3 dB Bandwidth	57			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$ (Figure 25)
C _s (OFF)	25			pF typ	
C _D , C _S (ON)	75			pF typ	
POWER REQUIREMENTS				. /!	V _{DD} = 3.6 V
- · · · · · · · · · · · · · · · · · · ·	l				
I_{DD}	0.003			μA typ	Digital inputs = 0 V or 3.6 V

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

Table 2. V_{DD} = 2.5 V ± 0.2 V, GND = 0 V, unless otherwise noted.

Parameter	+25°C	−40°C − +85°C	-40°C - +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	V	
On Resistance (RoN)	0.65			Ω typ	$V_{DD} = 2.3 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
	0.72	0.8	0.88	Ω max	(Figure 18)
On Resistance Match between	0.04			Ωtyp	$V_{DD} = 2.3 \text{ V}, V_S = 0.7 \text{ V}, I_S = 10 \text{ mA}$
Channels (ΔR _{ON})		0.08	0.085	Ω max	
On Resistance Flatness (RFLAT (ON))	0.16			Ω typ	$V_{DD} = 2.3 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
		0.23	0.24	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 2.7 \text{ V}$
Source Off Leakage I _s (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/2.4 \text{ V}, V_D = 2.4 \text{ V}/0.6 \text{ V}$
	±0.4	±4	±45	nA max	(Figure 19)
Channel On Leakage ID, Is (ON)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 2.4 \text{ V (Figure 20)}$
	±0.6	±12	±90	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			1.7	V min	
Input Low Voltage, V _{INL}			0.7	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	4			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	23			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	29	30	31	ns max	V _s = 1.5 V/0 V (Figure 21)
toff	5			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	7	8	9	ns max	V _s = 1.5 V (Figure 21)
Break-before-Make Time Delay	17			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
(t _{BBM})					·
			5	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V (Figure 22)}$
Charge Injection	30			pC typ	$V_S = 1.25 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF (Figure 23)}$
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$ (Figure 24)
Channel-to-Channel Crosstalk	-90			dB typ	S1A-S2A/S1B-S2B;
					$R_L = 50 \text{ V}, C_L = 5 \text{ pF}, f = 100 \text{ kHz; Figure 27}$
	-67			dB typ	S1A-S1B/S2A-S2B;
					$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$ Figure 25
Total Harmonic Distortion (THD + N)	0.022			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 1.5 V p-p$
Insertion Loss	-0.06			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$ (Figure 25)
–3 dB Bandwidth	57			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$ (Figure 25)
Cs (OFF)	25			pF typ	_
C_D , C_S (ON)	75			pF typ	
POWER REQUIREMENTS					$V_{DD} = 2.7 \text{ V}$
I _{DD}	0.003			μA typ	Digital inputs = 0 V or 2.7 V
		1	4	μA max	

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

Table 3. V_{DD} = 1.65 V \pm 1.95 V, GND = 0 V, unless otherwise noted. 1

Parameter	+25°C	-40°C - +85°C	-40°C - +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	٧	
On Resistance (R _{ON})	1			Ωtyp	$V_{DD} = 1.8 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
	1.4	2.2	2.2	Ωmax	(Figure 18)
	2	4	4	Ωtyp	$V_{DD} = 1.65 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
On Resistance Match between	0.1			Ωtyp	$V_{DD} = 1.65 \text{ V}, V_S = 0.7 \text{ V}, I_S = 10 \text{ mA}$
Channels (ΔR _{ON})				, ,	
LEAKAGE CURRENTS					V _{DD} = 1.95 V
Source Off Leakage Is (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/1.65 \text{ V}, V_D = 1.65 \text{ V}/0.6 \text{ V}$
5	±0.4	±4	±25	nA max	(Figure 19)
Channel On Leakage ID, Is (ON)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 1.65 \text{ V Figure } 20$
, , ,	±0.6	±10	±75	nA max	J. J. M. J. M. J.
DIGITAL INPUTS		-	-		
Input High Voltage, V _{INH}			0.65 V _{DD}	V min	
Input Low Voltage, V _{INL}			0.35 V _{DD}	V max	
Input Current			0.55 100	V IIIGA	
lint or linh	0.005			μΑ typ	V _{IN} = V _{INI} or V _{INH}
HINE OF HINE	0.003		±0.1	μA max	VIN — VINE OF VINE
C _{IN} , Digital Input Capacitance	4		±0.1	pF typ	
DYNAMIC CHARACTERISTICS ²	1			рг сур	
ton	28			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
CON	37	38	39	ns max	$V_S = 1.5 \Omega/0 \text{ V (Figure 21)}$
t _{off}	7	30	39	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
COFF	9	10	11	ns max	$V_S = 1.5 \text{ V (Figure 21)}$
Break-before-Make Time Delay	21	10	11	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
(t _{BBM})	21			iis typ	Ν _L = 30 12, C _L = 33 βι
(5	ns min	$V_{S1} = V_{S2} = 1 \text{ V (Figure 22)}$
Charge Injection	20			pC typ	$V_S = 1 \text{ V, } R_S = 0 \text{ V, } C_L = 1 \text{ nF (Figure 23)}$
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$, (Figure 24)
Channel-to-Channel Crosstalk	-90			dB typ	S1A-S2A/S1B-S2B;
Charmer to Charmer Crossean				ab typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$ (Figure 27)
	-67			dB typ	S1A-S1B/S2A-S2B;
	0,			ab typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
					(Figure 25)
Total Harmonic Distortion	0.14			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz,
(THD + N)					$V_s = 1.2 \text{ V p-p}$
Insertion Loss	-0.08			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$ (Figure 25)
–3 dB Bandwidth	57			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$ (Figure 25)
C _s (OFF)	25			pF typ	, , , , , , , , , , , , , , , , , , , ,
C _D , C _S (ON)	75			pF typ	
POWER REQUIREMENTS	†			1: -71:	V _{DD} = 1.95 V
	0.003			μA typ	Digital inputs = 0 V or 1.95 V
l _{DD}					

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

ParameterRatingVDD to GND-0.3 V to +4.6 VAnalog Inputs¹-0.3 V to VDD + 0.3 VDigital Inputs¹-0.3 V to 4.6 V or 10 mA, whichever occurs firstPeak Current, S or D500 mA3.3 V Operation460 mA1.8 V Operation420 mA (pulsed at 1 ms, 10% Duty Cycle Max)Continuous Current, S or D3.3 V Operation3.3 V Operation275 mA1.8 V Operation275 mA0perating Temperature Range Automotive (Y Version)-40°C to +125°CStorage Temperature Range-40°C to +150°CJunction Temperature150°CMSOP Package0JA Thermal Impedance0JC Thermal Impedance206°C/W44°C/W44°C/WIR Reflow, Peak Temperature235°C	1 aut 4.	
Analog Inputs¹ Digital Inputs¹ Peak Current, S or D 3.3 V Operation 2.5 V Operation 1.8 V Operation 2.5 V Operation 3.3 V Operation 460 mA 420 mA (pulsed at 1 ms, 10% Duty Cycle Max) Continuous Current, S or D 3.3 V Operation 2.5 V Operation 300 mA 275 mA 275 mA 250 mA Operating Temperature Range Automotive (Y Version) Storage Temperature Range Junction Temperature MSOP Package θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance IR Reflow, Peak Temperature Range Junction Temperature Range Junction Temperature 206°C/W 44°C/W 235°C	Parameter	Rating
Digital Inputs¹-0.3 V to 4.6 V or 10 mA, whichever occurs firstPeak Current, S or D3.3 V Operation500 mA2.5 V Operation460 mA1.8 V Operation420 mA (pulsed at 1 ms, 10% Duty Cycle Max)Continuous Current, S or D3.3 V Operation300 mA2.5 V Operation275 mA1.8 V Operation250 mAOperating Temperature Range Automotive (Y Version)-40°C to +125°CStorage Temperature Range Junction Temperature-65°C to +150°CMSOP Package0JA Thermal Impedance206°C/Wθ _{JC} Thermal Impedance44°C/WIR Reflow, Peak Temperature235°C	V _{DD} to GND	−0.3 V to +4.6 V
whichever occurs firstPeak Current, S or D3.3 V Operation500 mA2.5 V Operation460 mA1.8 V Operation420 mA (pulsed at 1 ms, 10% Duty Cycle Max)Continuous Current, S or D3.3 V Operation300 mA2.5 V Operation275 mA1.8 V Operation250 mAOperating Temperature Range Automotive (Y Version)-40°C to +125°CStorage Temperature Range-65°C to +150°CJunction Temperature150°CMSOP Package0JA Thermal Impedance206°C/WθJC Thermal Impedance44°C/WIR Reflow, Peak Temperature235°C	Analog Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
3.3 V Operation 2.5 V Operation 460 mA 420 mA (pulsed at 1 ms, 10% Duty Cycle Max) Continuous Current, S or D 3.3 V Operation 2.5 V Operation 300 mA 2.5 V Operation 275 mA 250 mA Operating Temperature Range Automotive (Y Version) Storage Temperature Range Junction Temperature MSOP Package 0 _{JA} Thermal Impedance 0 _{JC} Thermal Impedance IR Reflow, Peak Temperature 200 mA 420 mA (pulsed at 1 ms, 10% Duty Cycle Max) -40 mA 275 mA 250 mA -40 °C to +125 °C -65 °C to +150 °C 150 °C 44 °C/W 235 °C	Digital Inputs ¹	· · · · · · · · · · · · · · · · · · ·
2.5 V Operation 1.8 V Operation 460 mA 420 mA (pulsed at 1 ms, 10% Duty Cycle Max) Continuous Current, S or D 3.3 V Operation 2.5 V Operation 1.8 V Operation 275 mA 250 mA Operating Temperature Range Automotive (Y Version) Storage Temperature Range Junction Temperature MSOP Package θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance IR Reflow, Peak Temperature 206°C/W 44°C/W 235°C	Peak Current, S or D	
1.8 V Operation Continuous Current, S or D 3.3 V Operation 2.5 V Operation 1.8 V Operation 275 mA 250 mA Operating Temperature Range Automotive (Y Version) Storage Temperature Range Junction Temperature MSOP Package θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance IR Reflow, Peak Temperature 420 mA (pulsed at 1 ms, 10% Duty Cycle Max) 300 mA 275 mA 250 mA -40°C to +125°C -65°C to +150°C 150°C	3.3 V Operation	500 mA
Continuous Current, S or D 3.3 V Operation 2.5 V Operation 1.8 V Operation Operating Temperature Range Automotive (Y Version) Storage Temperature Range Junction Temperature MSOP Package θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance IR Reflow, Peak Temperature Duty Cycle Max) 300 mA 275 mA 250 mA -40°C to +125°C -65°C to +150°C 150°C 150°C 44°C/W 44°C/W 235°C	2.5 V Operation	460 mA
3.3 V Operation 2.5 V Operation 2.5 V Operation 2.5 W Operation 2.5 W Operation 2.5 MA 250 mA 250 mA Operating Temperature Range Automotive (Y Version) Storage Temperature Range Junction Temperature MSOP Package θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance IR Reflow, Peak Temperature 300 mA 275 mA 250 mA 250 mA -40°C to +125°C -65°C to +150°C 150°C 40°C/W 44°C/W 235°C	1.8 V Operation	
2.5 V Operation 1.8 V Operation 250 mA Operating Temperature Range Automotive (Y Version) Storage Temperature Range Junction Temperature MSOP Package θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance IR Reflow, Peak Temperature 275 mA 250 mA -40°C to +125°C -65°C to +150°C 150°C 206°C/W 44°C/W 235°C	Continuous Current, S or D	
1.8 V Operation Operating Temperature Range Automotive (Y Version) Storage Temperature Range Junction Temperature MSOP Package θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance IR Reflow, Peak Temperature 250 mA -40°C to +125°C -65°C to +150°C 150°C 206°C/W 44°C/W 235°C	3.3 V Operation	300 mA
Operating Temperature Range Automotive (Y Version) Storage Temperature Range Junction Temperature MSOP Package θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance IR Reflow, Peak Temperature Operating Temperature Range $-40^{\circ}\text{C to } +125^{\circ}\text{C}$ $-65^{\circ}\text{C to } +150^{\circ}\text{C}$ 150°C 206°C/W 44°C/W 235°C	2.5 V Operation	275 mA
Automotive (Y Version) Storage Temperature Range Junction Temperature MSOP Package θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance IR Reflow, Peak Temperature -40°C to +125°C -65°C to +150°C 150°C 40°C/W 44°C/W 235°C	1.8 V Operation	250 mA
Storage Temperature Range Junction Temperature MSOP Package θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance IR Reflow, Peak Temperature -65°C to +150°C 150°C 44°C/W 235°C	Operating Temperature Range	
Junction Temperature MSOP Package θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance IR Reflow, Peak Temperature 150°C 206°C/W 44°C/W 235°C	Automotive (Y Version)	-40°C to +125°C
MSOP Package θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance IR Reflow, Peak Temperature 206°C/W 44°C/W 235°C	Storage Temperature Range	−65°C to +150°C
 θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance IR Reflow, Peak Temperature 206°C/W 44°C/W 235°C 	Junction Temperature	150°C
θ _{JC} Thermal Impedance 44°C/W IR Reflow, Peak Temperature 235°C	MSOP Package	
IR Reflow, Peak Temperature 235°C	θ_{JA} Thermal Impedance	206°C/W
	θ_{JC} Thermal Impedance	44°C/W
	· · · · · · · · · · · · · · · · · · ·	235℃

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

TRUTH TABLE

Table 5.

Logic	Switch A	Switch B
0	Off	On
1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN TERMINOLOGY

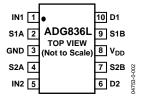


Figure 2. 10-Lead MSOP (RM-10)

Table 6.

Mnemonic	Description
V_{DD}	Most positive power supply potential.
I_{DD}	Positive supply current.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
$V_D(V_S)$	Analog voltage on terminals D and S.
Ron	Ohmic resistance between terminals D and S.
R _{FLAT} (ON)	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured
ΔR_{ON}	On resistance match between any two channels.
Is (OFF)	Source leakage current with the switch off.
I _D (OFF)	Drain leakage current with the switch off.
I _D , I _S (ON)	Channel leakage current with the switch on.
V_{INL}	Maximum input voltage for Logic 0.
V_{INH}	Minimum input voltage for Logic 1.
I _{INL} (I _{INH})	Input current of the digital input.
Cs (OFF)	Off switch source capacitance. Measured with reference to ground.
C _D (OFF)	Off switch drain capacitance. Measured with reference to ground.
C_D , C_S (ON)	On switch capacitance. Measured with reference to ground.
C _{IN}	Digital input capacitance.
ton	Delay time between the 50% and the 90% points of the digital input and switch on condition.
t_{OFF}	Delay time between the 50% and the 90% points of the digital input and switch off condition.
t _{BBM}	On or off time measured between the 80% points of both switches when switching from one to another.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.
Off Isolation	A measure of unwanted signal coupling through an off switch.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
-3 dB Bandwidth	The frequency at which the output is attenuated by 3 dB.
On Response	The frequency response of the on switch.
Insertion Loss	The loss due to the on resistance of the switch.
THD + N	The ratio of the harmonic amplitudes plus noise of a signal, to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

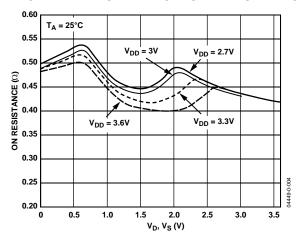


Figure 3. On Resistance vs. V_D (V_S), $V_{DD} = 2.7 \text{ V}$ to 3.6 V

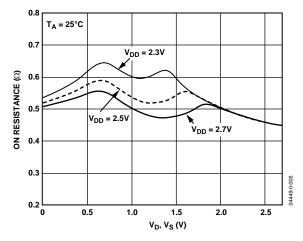


Figure 4. On Resistance vs. V_D (V_S), V_{DD} = 2.5 $V \pm 0.2 V$

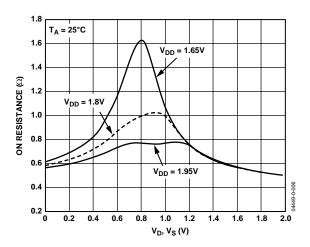


Figure 5. On Resistance vs. V_D (V_S), V_{DD} = 1.8 V \pm to 0.15 V

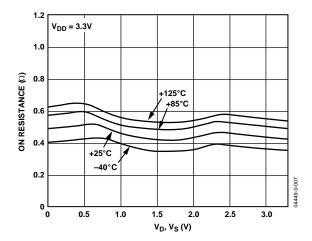


Figure 6. On Resistance vs. V_D (V_S) for Different Temperature, $V_{DD} = 3.3 \text{ V}$

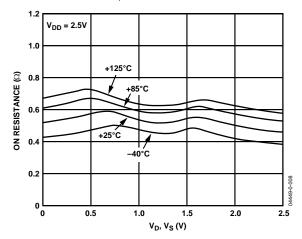


Figure 7. On Resistance vs. V_D (V_S) for Different Temperature, $V_{DD} = 2.5 \text{ V}$

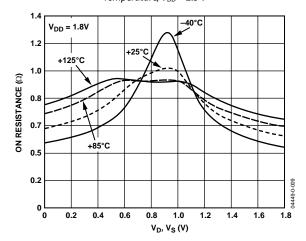


Figure 8. On Resistance vs. V_D (V_S) for Different Temperature, $V_{DD} = 1.8 \ V$

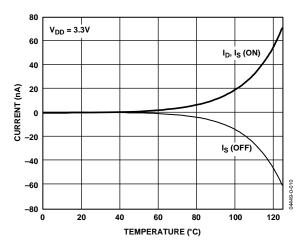


Figure 9. Leakage Current vs. Temperature, $V_{DD} = 3.3 \text{ V}$

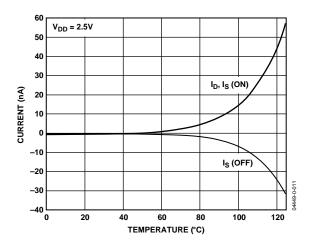


Figure 10. Leakage Current vs. Temperature, $V_{DD} = 2.5 \text{ V}$

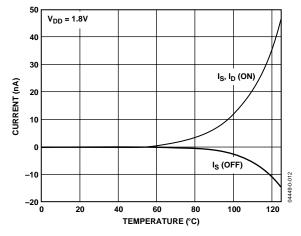


Figure 11. Leakage Current vs. Temperature, $V_{DD} = 1.8 \text{ V}$

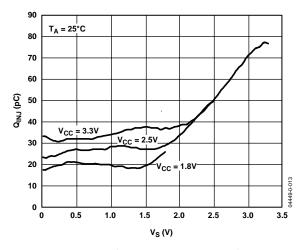


Figure 12. Charge Injection vs. Source Voltage

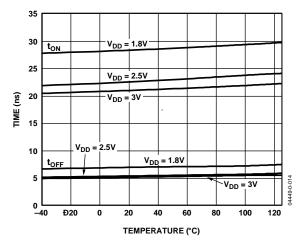


Figure 13. t_{ON}/t_{OFF} Times vs. Temperature

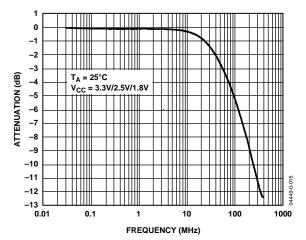


Figure 14. Bandwidth

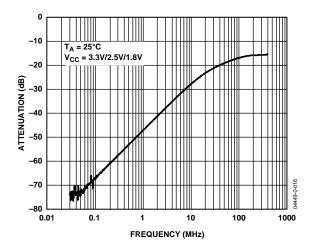


Figure 15. Off Isolation vs. Frequency

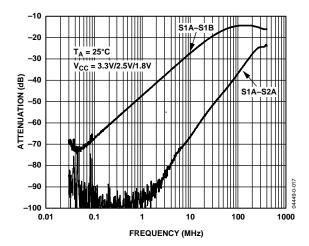


Figure 16. Crosstalk vs. Frequency

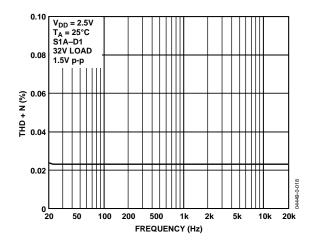
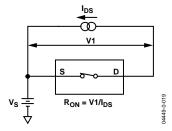
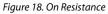




Figure 17. Total Harmonic Distortion + Noise

TEST CIRCUITS

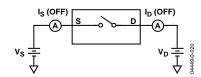


Figure 19. Off Leakage

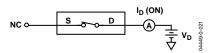


Figure 20. On Leakage

Figure 21. Switching Times, ton, toff

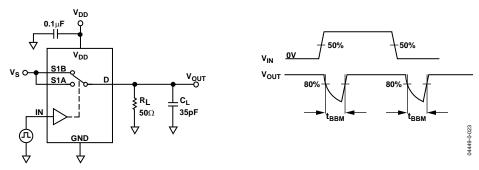


Figure 22. Break-before-Make Time Delay, tbbm

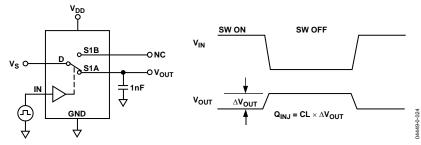


Figure 23. Charge Injection

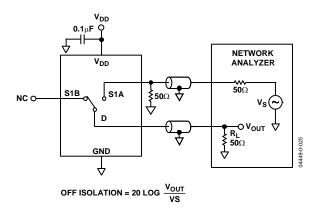


Figure 24. Off Isolation

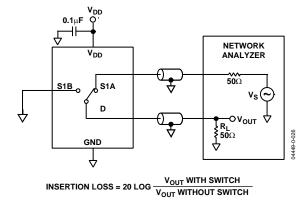


Figure 26. Bandwidth

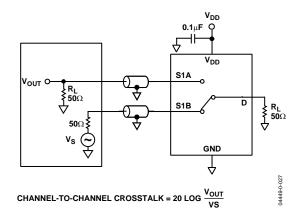


Figure 25. Channel-to-Channel Crosstalk (S1A-S1B)

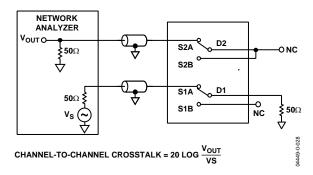


Figure 27. Channel-to-Channel Crosstalk (S1A-S2A)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187BA

Figure 28. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG836LYRM	−40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	SQA
ADG836LYRM-REEL	−40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	SQA
ADG836LYRM-REEL7	−40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	SQA

NOTES

ADG836L

NOTES

