

Vishay Siliconix

16-Ch/Dual 8-Ch High-Performance CMOS Analog Multiplexers

DESCRIPTION

The DG406 is a 16 channel single-ended analog multiplexer designed to connect one of sixteen inputs to a common output as determined by a 4-bit binary address. The DG407 selects one of eight differential inputs to a common differential output. Break-before-make switching action protects against momentary shorting of inputs.

An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer/demultiplexer to all switches off for stacking several devices. All control inputs, address (A_x) and enable (EN) are TTL compatible over the full specified operating temperature range.

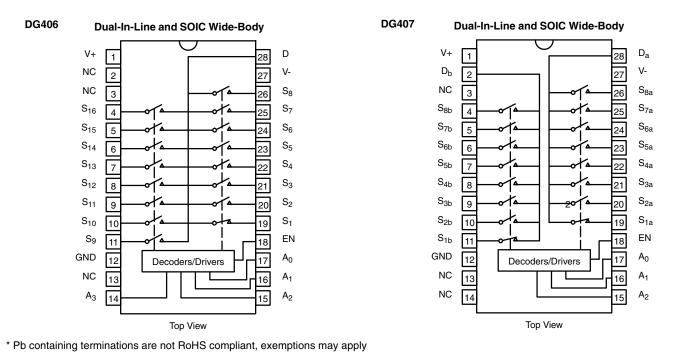
Applications for the DG406, DG407 include high speed data acquisition, audio signal switching and routing, ATE systems, and avionics. High performance and low power dissipation make them ideal for battery operated and remote instrumentation applications.

Designed in the 44 V silicon-gate CMOS process, the absolute maximum voltage rating is extended to 44 V, allowing operation with ± 20 V supplies. Additionally single (12 V) supply operation is allowed. An epitaxial layer prevents latchup.

For applications information please request documents 70601 and 70604.

FEATURES

- Low on-resistance $R_{DS(on)}$: 50 Ω
- Low charge injection Q: 15 pC
- Fast transition time t_{TRANS}: 200 ns
- Low power: 0.2 mW
- Single supply capability
- 44 V supply max. rating


BENEFITS

- Higher accuracy
- Reduced glitching
- Improved data throughput
- Reduced power consumption
- Increased ruggedness
- Wide supply ranges: ± 5 V to ± 20 V

APPLICATIONS

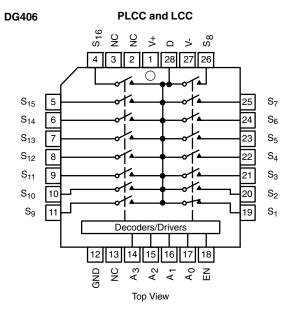
- Data acquisition systems
- Audio signal routing
- Medical instrumentation
- ATE systems
- Battery powered systems
- High-rel systems
- Single supply systems

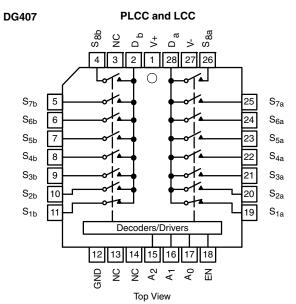
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

RoHS

COMPLIANT

www.vishav.com


Downloaded from Elcodis.com electronic components distributor


Document Number: 70061

S11-0179-Rev. J, 07-Feb-11

Vishay Siliconix

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE (DG406)										
Α ₃	A ₂	A ₁	A ₀	EN	On Switch					
Х	Х	Х	Х	0	None					
0	0	0	0	1	1					
0	0	0	1	1	2					
0	0	1	0	1	3					
0	0	1	1	1	4					
0	1	0	0	1	5					
0	1	0	1	1	6					
0	1	1	0	1	7					
0	1	1	1	1	8					
1	0	0	0	1	9					
1	0	0	1	1	10					
1	0	1	0	1	11					
1	0	1	1	1	12					
1	1	0	0	1	13					
1	1	0	1	1	14					
1	1	1	0	1	15					
1	1	1	1	1	16					

TRUTH TABLE (DG407)									
A ₂	A ₁	A ₀	EN	On Switch Pair					
Х	Х	Х	0	None					
0	0	0	1	1					
0	0	1	1	2					
0	1	0	1	3					
0	1	1	1	4					
1	0	0	1	5					
1	0	1	1	6					
1	1	0	1	7					
1	1	1	1	8					
1									

 $\begin{array}{l} \text{Logic "0"} = V_{AL} \leq 0.8 \text{ V} \\ \text{Logic "1"} = V_{AH} \geq 2.4 \text{ V} \\ \text{X} = \text{Do not Care} \end{array}$

ORDERING INFORMATION (DG406)								
Temp. Range Package Part Number								
	28-Pin Plastic DIP	DG406DJ DG406DJ-E3						
- 40 °C to 85 °C	28-Pin PLCC	DG406DN DG406DN-T1-E3						
	28-Pin Widebody SOIC	DG406DW DG406DW-E3						

ORDERING INFORMATION (DG407)								
Temp. Range Package Part Number								
	28-Pin Plastic DIP	DG407DJ DG407DJ-E3						
- 40 °C to 85 °C	28-Pin PLCC	DG407DN DG407DN-T1-E3						
	28-Pin Widebody SOIC	DG407DW DG407DW-E3						

Vishay Siliconix

ABSOLUTE MAXIMUM	I RATINGS		
Parameter		Limit	Unit
Voltages Referenced to V-	V+	44	
voltages Relefenced to v-	GND	25	v
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 V or 20 mA, whichever occurs first	, i i i i i i i i i i i i i i i i i i i
Current (Any terminal)		30	mA
Peak Current, S or D (Pulsed at	1 ms, 10 % duty cycle max.)	100	IIIA
Storage Temperature	(AK, AZ Suffix)	- 65 to 150	°C
Storage Temperature	(DJ, DN Suffix)	- 65 to 125	C
	28-Pin Plastic DIP ^b	625	mW
	28-Pin CerDIP ^d	1.2	W
Power Dissipation (Package) ^b	28-Pin Plastic PLCC ^c	450	mW
	LCC-28 ^e	1.35	W
	28-Pin Widebody SOIC	450	mW

Notes:

a. Signals on SX, DX or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads soldered or welded to PC board.

c. Derate 6 mW/°C above 75°C.

d. Derate 12 mW/°C above 75°C.

e. Derate 13.5 mW/°C above 75°C .

Vishay Siliconix

$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SPECIFICATIONS ^a		Test Condition	15			۵ ۵	uffix	<u> </u>	uffix	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Unless Otherwise Specified				A Suffix - 55 °C to 125 °C				
Analog Switch Value Column Full -15 15 15 10 Analog Signal Range [®] Value Column Ros(m) Vp = ± 10 V, ls = -10 mA sequence each switch on Foul 50 10 11 1	Devenueter	Overstant			Tama	T C	Man d	Mand	Man d	Mand	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Symbol	$V_{AL} = 0.8 V, V_{AH} =$	2.4 V'	Temp."	Typ.°	Min."	Max."	Min."	Max."	Unit
$ \begin{array}{c} \text{Drain-Source} \\ \text{On-Resistance} \\ \text{On-Resistance} \\ \text{Pbs(on)} \\ \text{Sequence each switch on} \\ \text{Sequence each switch on} \\ \text{Full} \\ \text{Full} \\ \text{Full} \\ \text{Full} \\ \text{Source Off Leakage Current} \\ \text{Is}(an) \\ \text{Drain Off Leakage Current} \\ \text{Is}(an) \\ \text{Is}(an) \\ \text{Drain Off Leakage Current} \\ \text{Is}(an) \\ \text{Drain Off Leakage Current} \\ \text{Is}(an) \\ \text{Is}(an) \\ \text{Drain Off Leakage Current} \\ \text{Is}(an) \\ \text{Drain Of Leakage Current} \\ \text{Is}(an) \\ \text{Drain Of Leakage Current} \\ \text{Is}(an) \\ \text{Is}(an) \\ \text{Is}(an) \\ \text{Drain Of Leakage Current} \\ \text{Is}(an) \\ \text{Is}(an) \\ \text{Sequence each switch on} \\ \text{Sequence each switch on} \\ \text{Foull} \\ \text{Od406} \\ \hline \hline \text{Room} \\ \text{Od407} \\ \hline \hline \text{Room} \\ \text{Is}(an) \\ \text{Od404} \\ \hline \text{Foull} \\ \text{Is}(an) \\ \text{Od404} \\ \text{Is}(an) \\ \text$	•		I				45	45	45	45	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		V _{ANALOG}		10 4	-		- 15	-	- 15	-	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	On-Resistance	R _{DS(on)}				50					Ω
	R _{DS(on)} Matching Between Channels ^g	$\Delta R_{DS(on)}$	$V_D = \pm 10 V$		Room	5					%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Source Off Leakage Current	I _{S(off)}	<u> У – 0 У</u>			0.01					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain Off Lealing a Ourrant		$V_{\rm D} = \pm 10 \rm V$	DG406		0.04					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain Off Leakage Current	D(off)	V _S = ± 10 V	DG407		0.04					nA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				DG406		0.04					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drain On Leakage Current	I _{D(on)}		DG407		0.04					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Digital Control			L		I	I			I	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Logic High Input Voltage	V _{INH}			Full		2.4		2.4		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Full			0.8		0.8	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 1 0		V _∆ = 2.4 V, 15	V	Full		- 1	1	- 1	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Full		- 1	1	- 1	1	μA
			=::		Room	7					pF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	e										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Transition Time	t _{TRANS}	see figure 2			200					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Break-Before-Make Interval	t _{OPEN}	see figure 4			50					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Enable Turn-On Time	t _{ON(EN)}			Room	150	-				ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Enable Turn-Off Time	t _{OFF(EN)}	see figure 3		Room	70		150		150	
Off Isolation ^h OIRR $V_{EN} = 0 V, R_L = 1 k\Omega$ f = 100 kHz Room - 69 Image: Constraint of the symbol dd Source Off Capacitance $C_{S(off)}$ $V_{EN} = 0 V, V_S = 0 V, f = 1 MHz$ Room 8 Image: Constraint of the symbol	Charge Injection	0	$V_{s} = 0 V. C_{1} = 1 n F. F$	$R_{e} = 0 \Omega$		15					рС
Source Off Capacitance $C_{S(off)}$ $V_{EN} = 0 V, V_S = 0 V, f = 1 MHz$ Room 8 Image: Marcon Structure Marcon Structu	Off Isolation ^h		V _{EN} = 0 V, R _L = 1								dB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Source Off Capacitance	C _S (off)		= 1 MHz	Room	8					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain Off Capacitance	C _{D(off)}		DG407							pF
Power Supplies Positive Supply Current I+ $V_{EN} = V_A = 0 \text{ or } 5 \text{ V}$ $\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain On Capacitance	C _{D(on)}	f = 1 MHz DG406								
Positive Supply Current I+ $V_{EN} = V_A = 0 \text{ or } 5 \text{ V}$ $\begin{array}{c c c c c c c c c c c c c c c c c c c $	Power Supplies		I		I			1	1		
Negative Supply CurrentI- $I I-$ <		l+		- \ /		13					
Positive Supply Current I+ $V_{EN} = 2.4 \text{ V}, \text{ V}_{A} = 0 \text{ V}$ Room 50 500 500 700 Full -20 -20 -20	Negative Supply Current	I-	$v_{\rm EN} = v_{\rm A} = 0$ or	σV		- 0.01					
$V_{EN} = 2.4 \text{ V}, \text{ V}_{A} = 0 \text{ V}$ Room - 0.01 - 20 - 20	Positive Supply Current	l+			Room	50					μA
	Negative Supply Current	I-	$V_{EN} = 2.4 V, V_A = 0 V$		Room	- 0.01					

Vishay Siliconix

SPECIFICATIONS ^a (for	Single Si	upply)								
		Test Conditions Unless Otherwise Specified				A Suffix - 55 °C to 125 °C		D Suffix - 40 °C to 85 °C		
Parameter	Symbol	V+ = 12 V, V- = 0 V _{AL} = 0.8 V, V _{AH} =		Temp. ^b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch				•	•	•		•		
Analog Signal Range ^e	V _{ANALOG}			Full		0	12	0	12	V
Drain-Source On-Resistance	R _{DS(on)}	V _D = 3 V, 10 V, I _S = - 1 mA sequence each switch on		Room	90		120		120	Ω
R _{DS(on)} Matching Between Channels ^g	$\Delta R_{DS(on)}$			Room	5					%
Source Off Leakage Current	I _{S(off)}	V _{EN} = 0 V		Room	0.01					
Drain Off Lookage Current		$V_D = 10 \text{ V or } 0.5 \text{ V}$ $V_S = 0.5 \text{ V or } 10 \text{ V}$	DG406	Room	0.04					nA
Drain Off Leakage Current	D(off)		DG407	Room	0.04					
		$V_{\rm S} = V_{\rm D} = \pm 10$	DG406	Room	0.04					
Drain On Leakage Current	I _{D(on)}	sequence each switch on	DG407	Room	0.04					
Dynamic Characteristics										
Switching Time of Multiplexer	t _{OPEN}	V _{S1} = 8 V, V _{S8} = 0 V, V	_{IN} = 2.4 V	Room	300		450		450	
Enable Turn-On Time	t _{ON(EN)}	V _{INH} = 2.4 V, V _{INL}	= 0 V	Room	250		600		600	ns
Enable Turn-Off Time	t _{OFF(EN)}	V _{S1} = 5 V		Room	150		300		300	1
Charge Injection	Q	$C_{L} = 1 \text{ nF}, V_{S} = 6 \text{ V}, R_{S} = 0$		Room	20					рС
Power Supplies										
Positive Supply Current	I+	V _{EN} = 0 V or 5 V, V _A = 0 V or 5 V		Room Full	13		30 75		30 75	
Negative Supply Current	I-			Room Full	- 0.01	- 20 - 20		- 20 - 20		μA

Notes:

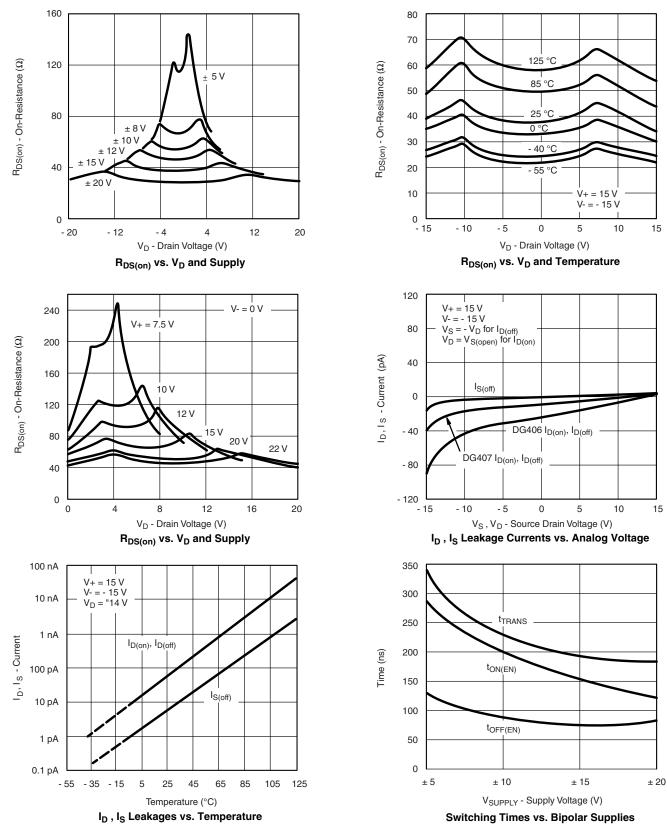
a. Refer to PROCESS OPTION FLOWCHART.

b. Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.

c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

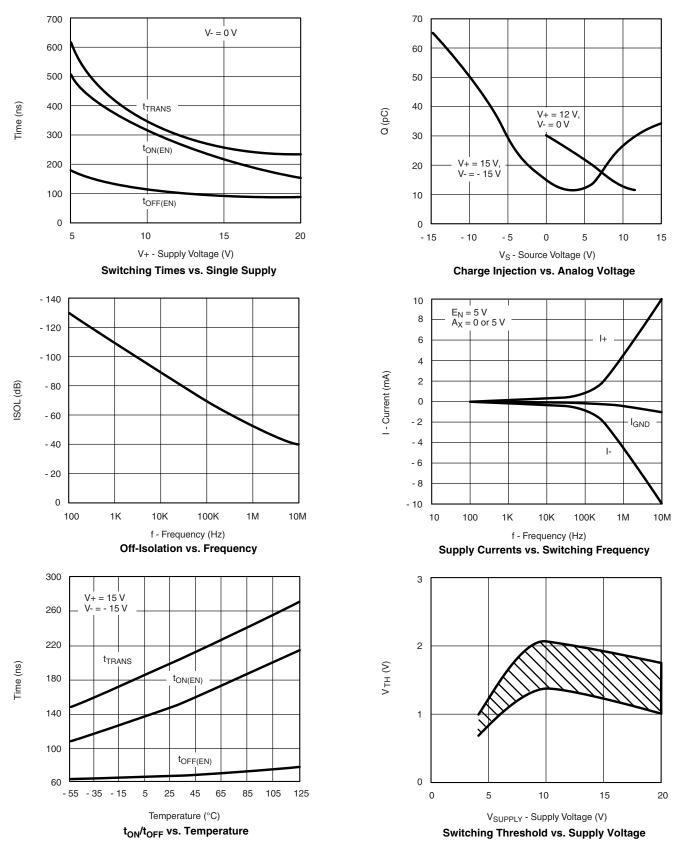
e. Guaranteed by design, not subject to production test. f. V_{IN} = input voltage to perform proper function.


g. $\Delta R_{DS(on)} = R_{DS(on)} \text{ max.} - R_{DS(on)} \text{ min.}$ h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

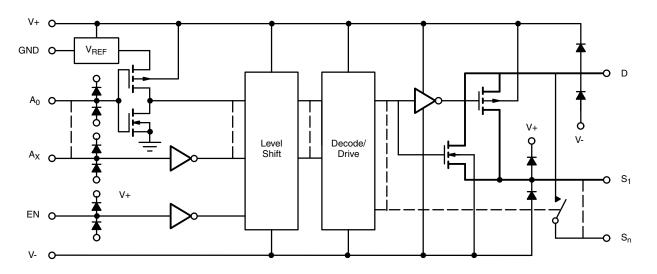
Vishay Siliconix

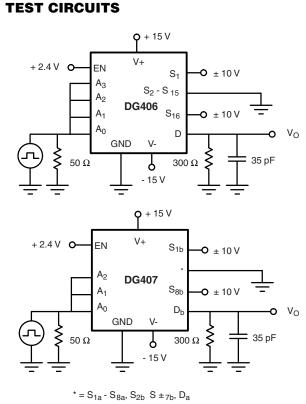
TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

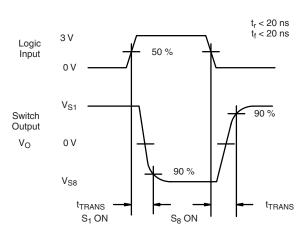


www.vishay.com 6

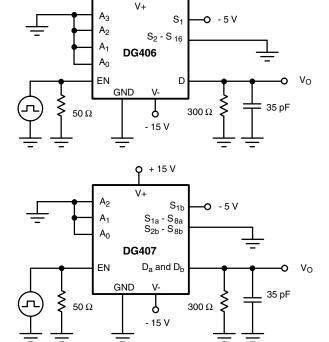
Vishay Siliconix


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

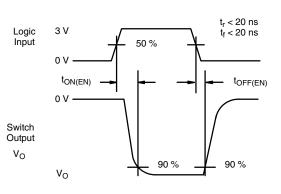

Document Number: 70061 S11-0179-Rev. J, 07-Feb-11


Vishay Siliconix

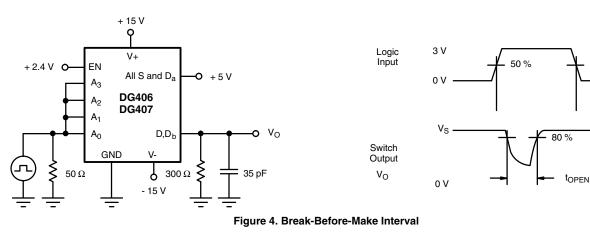
SCHEMATIC DIAGRAM (Typical Channel)


Figure 2. Transition Time

Downloaded from Elcodis.com electronic components distributor



TEST CIRCUITS


VISHAY

Q + 15 V

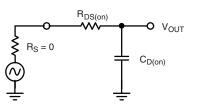
Figure 3. Enable Switching Time

DG406, DG407

Vishay Siliconix

 $t_r < 20 \text{ ns}$ $t_f < 20 \text{ ns}$

Vishay Siliconix


APPLICATIONS HINTS

Sampling speed is limited by two consecutive events: the transition time of the multiplexer, and the settling time of the sampled signal at the output.

 t_{TRANS} is given on the data sheet. Settling time at the load depends on several parameters: $R_{DS(on)}$ of the multiplexer, source impedance, multiplexer and load capacitances, charge injection of the multiplexer and accuracy desired.

The settling time for the multiplexer alone can be derived from the model shown in figure 5. Assuming a low impedance signal source like that presented by an op amp or a buffer amplifier, the settling time of the RC network for a given accuracy is equal to $n\tau$:

% ACCURACY	# BITS	Ν
0.25	8	6
0.012	12	9
0.0017	15	11

Figure 5. Simplified Model of One Multiplexer Channel

The maximum sampling frequency of the multiplexer is:

$$f_{s} = \frac{1}{N(t_{SETTLING} + t_{TRANS})}$$
(1)

where N = number of channels to scan $t_{SETTLING} = n\tau = n \ x \ R_{DS(on)} \ x \ C_{D(on)}$

For the DG406 then, at room temp and for 12-bit accuracy, using the maximum limits:

$$f_{s} = \frac{1}{16 (9 \times 100 \Omega \times 10^{-12} \text{F}) + 300 \times 10^{-12} \text{s}}$$
(2)

or

$$f_s = 694 \text{ kHz} \tag{3}$$

From the sampling theorem, to properly recover the original signal, the sampling frequency should be more than twice the maximum component frequency of the original signal. This assumes perfect bandlimiting. In a real application sampling at three to four times the filter cutoff frequency is a good practice.

Therefore from equation 2 above:

$$f_c = \frac{1}{4} \times f_s = 173 \text{ kHz}$$
 (4)

From this we can see that the DG406 can be used to sample 16 different signals whose maximum component frequency can be as high as 173 kHz. If for example, two channels are used to double sample the same incoming signal then its cutoff frequency can be doubled.

The block diagram shown in Figure 6 illustrates a typical data acquisition front end suitable for low-level analog signals. Differential multiplexing of small signals is preferred since this method helps to reject any common mode noise. This is especially important when the sensors are located at a distance and it may eliminate the need for individual amplifiers. A low $R_{DS(on)}$, low leakage multiplexer like the DG407 helps to reduce measurement errors. The low power dissipation of the DG407 minimizes on-chip thermal gradients which can cause errors due to temperature mismatch along the parasitic thermocouple paths. Please refer to Application Note AN203 for additional information.

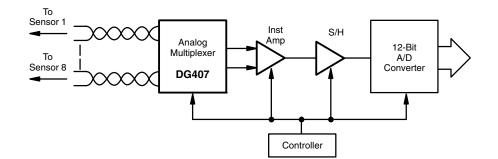


Figure 6. Measuring low-level analog signals is more accurate when using a differential multiplexing technique

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70061.

www.vishay.com 10

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.