

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC})
Switch Voltage (Note 2)
Input Voltage (V_{IN}) (Note 2)
Input Diode Current
Switch Current
Peak Switch Current
(Pulsed at 1 mS duration,
<10\% Duty Cycle)
Power Dissipation at $85^{\circ} \mathrm{C}$
SC70 package
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
Maximum Junction Temperature (T_{J})
Lead Temperature (T_{L})
(Soldering, 10 seconds)
ESD (Human Body Model)
-0.5 V to +6.0 V -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ -0.5 V to +6.0 V
$-50 \mathrm{~mA}$
200 mA

400 mA

180 mW
$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
$+260^{\circ} \mathrm{C}$
8000 V

Recommended Operating

 Conditions (Note 3)| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 1.65 V to 5.5 V |
| :--- | ---: |
| Control Input Voltage (Note 3) | 0 V to V_{CC} |
| Switch Input Voltage | 0 V to V_{CC} |
| Operating Temperature | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| Thermal Resistance θ_{JA} in Still Air | |
| \quad SC70 package | $350^{\circ} \mathrm{C} / \mathrm{W}$ |

DC Electrical Characteristics (all typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Typ	Max	Min	Max		
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Input Voltage HIGH	2.7 to 3.6				2.0		V	
		4.5 to 5.5				2.4			
$\overline{\mathrm{V}} \mathrm{IL}$	Input Voltage LOW	2.7 to 3.6					0.6	V	
		4.5 to 5.5					0.8		
I_{IN}	Control Input Leakage	2.7 to 3.6				-1.0	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
		4.5 to 5.5				-1.0	1.0		
$\mathrm{I}_{\mathrm{NO}(\text { OFF }),}$ INC(OFF)	OFF Leakage Current	5.5	-2.0		2.0	-20.0	20.0	nA	$\begin{aligned} & \mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{~B}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\mathrm{A}(\mathrm{ON})}$	ON Leakage Current	5.5	-4.0		4.0	-40.0	40.0	nA	$\begin{aligned} & A=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & B=1 \mathrm{~V}, 4.5 \mathrm{~V} \text { or Floating } \end{aligned}$
$\overline{\mathrm{R}_{\text {ON }}}$	Switch On Resistance (Note 4)	2.7		1.4	2.1		2.5	Ω	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~B}=1.5 \mathrm{~V}$
		4.5		0.75	0.9		1.0		$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~B}=3.5 \mathrm{~V}$
$\overline{\mathrm{R}_{\text {FLAT(ON) }}}$	On Resistance Flatness (Note 5)	2.7		0.6				Ω	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~B}_{0}=0 \mathrm{~V}, 0.75 \mathrm{~V}, 1.5 \mathrm{~V}$
		4.5		0.1	0.2		0.3		lout $=100 \mathrm{~mA}, \mathrm{~B}_{0}=0 \mathrm{~V}, 1 \mathrm{~V}, 2 \mathrm{~V}$
$\overline{I_{C C}}$	Quiescent Supply Current	3.6		0.1	0.5		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\text {OUT }}=0 \mathrm{~V}$
		5.5		0.1	0.5		1.0		

Note 4: On Resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
Note 5: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	Figure Number
			Min	Typ	Max	Min	Max			
t_{ON}	Turn ON Time	2.7 to 3.6		30.0	40.0		45.0	ns	$\begin{aligned} & \mathrm{B}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~B}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	Figure 1
		4.5 to 5.5		15.0	20.0		25.0			
toff	Turn OFF Time	2.7 to 3.6		25.0	35.0		45.0	ns	$\mathrm{B}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Figure 1
		4.5 to 5.5		22.0	30.0		40.0		$\mathrm{B}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
Q	Charge Injection	2.7 to 3.6		10.0				pC	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	Figure 2
		4.5 to 5.5		20.0						
OIRR	OFF- Isolation	2.7 to 3.6		-65.0				dB	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	Figure 3
		4.5 to 5.5		-65.0						
BW	-3db Bandwidth	2.7 to 3.6		300				MHz	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Figure 4
		4.5 to 5.5		300						
THD	Total Harmonic Distortion	2.7 to 3.6		0.001				\%	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V} P \mathrm{P}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	Figure 5
		4.5 to 5.5		0.001						

Capacitance

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Units	Conditions	Figure Number
			Min	Typ	Max			
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	0		3.0		pF	$\mathrm{f}=1 \mathrm{MHz}$	Figure 6
$\mathrm{C}_{\text {OFF }}$	A/B Port OFF Capacitance	4.5		20.0		pF	$\mathrm{f}=1 \mathrm{MHz}$	Figure 6
C_{ON}	A/B Port ON Capacitance	4.5		65.0		pF	$\mathrm{f}=1 \mathrm{MHz}$	Figure 6

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Pb-Free 6-Lead MicroPak, 1.0mm Wide
 Package Number MAC06A

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
