
Abstract

General Description The MAX4886 high-speed analog switch is ideal for HDMI/DVI switching applications, permitting $2: 1$ or $1: 2$ switching. The MAX4886 contains four differential pairs of $1: 2$ or $2: 1$ switches for RGB and clocking signals. The MAX4886 connects either one monitor to one of two digital video signals, or one HDMI/DVI source to one of two loads (sink). The MAX4886 set of differential switches is based on an nFET architecture with internal charge pump for gate overdrive. This advanced architecture results in an extremely low capacitance and on-resistance needed for the excellent return loss requirements for digital switching. An efficient internal charge-pump design offers very low quiescent current for power-sensitive notebook designs. The MAX4886 features 8Ω (typ) on-resistance and 2.5 pF on-capacitance switches for routing RGB and CLK video signals. The MAX4886 is a high-frequency companion device to the MAX4929. These two devices combined perform the full 2:1 HDMI/DVI switching function. The MAX4886 is available in a space-saving, 42-pin, $3.5 \mathrm{~mm} \times 9.0 \mathrm{~mm}$ TQFN package and operates over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

HDTV Monitors/Receivers
Video Projectors
Notebook Computers
Digital HDTV Switch Boxes/Tuners
Multimedia Audio/Video Switchers
Servers/Routers with DVI Interfaces
Digital Video Recorders
LVDS Switching
1000 Base-BX, Switching
\qquad Features

- Single +3.0V to +3.6V Power Supply
- Low On-Resistance (Ron): 8Ω (typ)
- Low On-Capacitance (Con): 2.5pF (typ)
- Low Skew: 20ps (typ)
-700 AA Low Supply Current
- 2.6GHz (typ) Ultra-High Bandwidth
- 0.6dB (typ) Ultra-Low Insertion Loss
- High-Frequency Companion Device to MAX4929
- Use MAX4886 and MAX4929 to Form a Complete HDMI/DVI 2:1 Switch
- 42-Pin, $3.5 \mathrm{~mm} \times 9.0 \mathrm{~mm}$, Space-Saving TQFN

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX4886ETO +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	42 TQFN-EP**	T42359OM-1

+Denotes a lead-free package.
*EP $=$ Exposed paddle.

Eye Diagram
 UI = 606ps

Pin Configuration appears at end of data sheet.

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch

ABSOLUTE MAXIMUM RATINGS

Note 1: Signal exceeding VDD or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD			3.0		3.6	V
Quiescent Supply Current	IDD	$+3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq+3.6 \mathrm{~V}$; SEL $=0 \mathrm{~V}$ or V_{DD}			600	1100	$\mu \mathrm{A}$
ANALOG SWITCH							
On-Resistance (Note 3)	Ron	$\begin{aligned} & V_{D D}=+3 V, 0 V \leq V_{C O M} \\ & \leq V_{D D}, I_{C O M}=-40 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8	11	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ $\mathrm{T}_{\mathrm{MAX}}$			15	
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \\ & \mathrm{ICOM}_{-}=-40 \mathrm{~mA}, \\ & 0 \leq \mathrm{V}_{C O M} \leq 1.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8	11	
			$\begin{aligned} & T_{A}=T_{\text {MIN }} \text { to } \\ & T_{\text {MAX }} \end{aligned}$		15		
On-Resistance Matching (Notes 3, 4)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, 1.5 \mathrm{~V} \\ & \leq \mathrm{V}_{\text {COM }} \leq \mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{I}_{\mathrm{COM}}^{-}=-40 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.28	0.40	Ω
			$T_{A}=T_{M I N} \text { to }$ TMAX			0.8	
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, 0 \leq \mathrm{V}_{\mathrm{COM}} \\ & \leq 1.5 \mathrm{~V} \text {, } \mathrm{ICOM}_{-}=-40 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.28	0.40	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ $\mathrm{T}_{\mathrm{MAX}}$		0.8		
On-Resistance Flatness (Note 3)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \\ & \mathrm{ICOM}_{1}=-40 \mathrm{~mA}, \\ & 1.5 \mathrm{~V}<\mathrm{V}_{C O M}<\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.02	0.60	Ω
			$\begin{aligned} & T_{A}=T_{\text {MIN }} \text { to } \\ & T_{\text {MAX }} \end{aligned}$			1	
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \\ & \mathrm{ICOM}_{-}=-40 \mathrm{~mA}, \\ & 0 \leq \mathrm{V}_{\text {COM }} \leq 1.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.02	0.60	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \\ & \mathrm{T}_{\text {MAX }} \end{aligned}$		1		
Leakage Current	IL	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+0.3 \mathrm{~V},+3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=+3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$		-1		+1	$\mu \mathrm{A}$
SWITCH DYNAMIC							
Off-Capacitance	CofF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {COM }}=\mathrm{V}_{\text {NC_ }}$ or V_{NO}			1.5		pF

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 2$)$

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :--- | :---: | :---: | :---: | UNITS

Note 2: Maximum and minimum limits over temperature are guaranteed by design and characterization. Device is production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 3: Negative current is going into COM_ and out of NO_{-}or NC_{-}.
Note 4: Guaranteed by design.

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch

Typical Operating Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} 1,4,10,14, \\ 17,19,21, \\ 39,41 \end{gathered}$	GND	Ground
$\begin{gathered} 5,8,13,18 \\ 20,30,40 \\ 42 \end{gathered}$	$V_{D D}$	Power-Supply Voltage Input. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ or larger ceramic capacitor.
2	COM1+	Data Signal Inputs/Outputs
3	COM1-	Data Signal Inputs/Outputs
6	COM2+	Data Signal Inputs/Outputs
7	COM2-	Data Signal Inputs/Outputs
9	SEL	Select Input. Logic input for switch connection (see Table 1).
11	COM3+	Data Signal Inputs/Outputs
12	COM3-	Data Signal Inputs/Outputs
15	COM4+	Data Signal Inputs/Outputs
16	COM4-	Data Signal Inputs/Outputs
22	NO4-	Differential Pair. Data Signal Inputs/Outputs.
23	NO4+	Differential Pair. Data Signal Inputs/Outputs.
24	NO3-	Differential Pair. Data Signal Inputs/Outputs.
25	NO3+	Differential Pair. Data Signal Inputs/Outputs.
26	NC4-	Differential Pair. Data Signal Inputs/Outputs.
27	NC4+	Differential Pair. Data Signal Inputs/Outputs.
28	NC3-	Differential Pair. Data Signal Inputs/Outputs.
29	NC3+	Differential Pair. Data Signal Inputs/Outputs.
31	NO2-	Differential Pair. Data Signal Inputs/Outputs.
32	NO2+	Differential Pair. Data Signal Inputs/Outputs.
33	NO1-	Differential Pair. Data Signal Inputs/Outputs.
34	NO1+	Differential Pair. Data Signal Inputs/Outputs.
35	NC2-	Differential Pair. Data Signal Inputs/Outputs.
36	NC2+	Differential Pair. Data Signal Inputs/Outputs.
37	NC1-	Differential Pair. Data Signal Inputs/Outputs.
38	NC1+	Differential Pair. Data Signal Inputs/Outputs.
EP	EP	Exposed Paddle. Connect EP to GND.

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch

Detailed Description

The MAX4886 high-speed analog switch is ideal for HDMI/DVI switching applications, permitting 2:1 or 1:2 switching. The MAX4886 contains four differential pairs for HDMI or DVI switching. The MAX4886 connects either one monitor to one of two digital video signals or one HDMI/DVI output to one of two connectors or loads.
The MAX4886 differential switches are based on an nFET architecture with an internal charge pump for gate overdrive. This advanced architecture results in an extremely low capacitance and on-resistance needed for an excellent returns loss.
The MAX4886 features an 8Ω (typ) on-resistance and 2.5 pF on-capacitance switches for routing RGB and CLK video signals.

Table 1. Switch Truth Table

SEL	FUNCTION
0	COM_ to NC_
1	COM_ to NO_{-}

The MAX4886 switches are identical, and any of the switches can be used to route RGB and CLK video signals.
The device will also be useful in other high-speed switching applications such as LVDS and LVPECL.

Analog-Signal Levels

Signal inputs over the full voltage range (0 V to V_{DD}) are passed through the switch with minimal change in onresistance (see the Typical Operating Characteristics section). The switches are bidirectional. Therefore, COM_, NC_, and NO_ can be either inputs or outputs.

Logic Inputs (SEL)

The MAX4886 has a logic input that controls the switch on/off function. Use SEL to switch COM_ to NO_ or COM_ to NC_. Table 1 and the Functional Diagram illustrate the MAX4886 Truth Table.

Applications Information

Power-Supply Bypassing and Sequencing
Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device. Always sequence VDD on first, followed by the switch inputs and the logic inputs. Bypass at least one VDD input to ground with a $0.1 \mu \mathrm{~F}$ capacitor as close to the device as possible. Use the smallest physical size possible for optimal performance.
It is also recommended to bypass more than one $V_{D D}$ input. A good strategy is to bypass one VDD input with a $0.1 \mu \mathrm{~F}$ capacitor and at least a second $V_{D D}$ input with a 1 nF to 10 nF capacitor. (Use 0603 or smaller physical size ceramic capacitor).

PC Board (PCB) Layout High-speed switches such as the MAX4886 require proper PCB layout for optimum performance. Ensure that impedance-controlled PCB traces for high-speed signals are matched in length, and as short as possible. Connect the MAX4886 exposed paddle to a solid ground plane.

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch

Timing Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Propagation Delay

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch

Figure 3. Skew Measurements

Additional Applications Information
In a typical application (see Figure 5), the MAX4886 and MAX4929 are used to route the TMDS signals and low-frequency signals between two HDMI inputs.
In another application (see Figure 6), the MAX4886 is used in a notebook to route high-frequency DVI port on the computer or to the connector on the docking station. The MAX4886 routes four differential signals (RGB and CLK) either to the DVI connector or to the docking station port. The switch is inherently bilateral and may be used as a $2: 1$ or $1: 2$ mux without penalties.

Chip Information
PROCESS: BiCMOS
Connect exposed paddle to GND.

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch

Timing Circuits/Timing Diagrams (continued)

Figure 4. On-Loss, Off-Isolation, and Crosstalk
Typical Application Diagrams

Figure 5. TV/Monitor Application

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch

Figure 6. Notebook Application

Pin Configuration

Quad，High－Speed HDMI／DVI 2：1 Digital Video Switch

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information， go to www．maxim－ic．com／packages．）

Quad，High－Speed HDMI／DVI 2：1 Digital Video Switch

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information， go to www．maxim－ic．com／packages．）

CIMMIN DIMENSIDNS						
REF．	MIN．	NDM．	MAX．	NDTE		
A	0.70	0.75	0.80			
A1	0	-	0.05			
A3	0.20 REF．					
b	0.20	0.25	0.30			
D	3.40	3.50	3.60			
E	8.90	9.00	9.10			
e	0.50 BSC．					
k	0.25	-	-			
L	0.35	0.40	0.45	PINL		
N	42					
ND	4					
NE						

	EXPOSED PAD VARIATIUNS					
	D2			E2		
	MIN．	NDM．	MAX．	MIN．	NDM．	MAX．
T423590－1	1.95	2.05	2.15	7.45	7.55	7.65
T423590M－1	1.95	2.05	2.15	7.45	7.55	7.65

NOTES：
1．DIMENSIDNING \＆TOLERANCING CINFIRM TO ASME Y14．5M－1994．
2．ALL DIMENSIONS ARE in milLimeters．angles are in degrees．
3． N IS THE TOTAL NUMBER DF TERMINALS
4．The teruinal \＃1 identifier and terminal numbering canvention shall CDNFRRM TD JESD 95－1 SPP－012．DETAILS DF TERMINAL \＃1 IDENTIFIER ARE םPTIONAL，BUT MUST BE LICCATED WITHIN THE ZZNE INDICATED．THE TERMINAL \＃1 ［DENTIFIER MAY BE EITHER A MDLD DR MARKED FEATURE．
S．dimensian b applies to metallized terminal and is measured between 0.25 mm AND 0.30 mm FRDM TERMINAL TIP．

6．ND AND NE REFER TO THE NUMBER OF TERMINALS DN EACH D AND E SIDE RESPECTIVELY．
7．CDPLANARITY APPLIES TD THE EXPISED HEAT SINk SLUG AS WELL AS THE TERMINALS．CDPLANARITY SHALL NDT EXCEED 0.08 mm ．
8．VARPAGE SHALL NDT EXCEED 0.10 mm ．
（ marking is for package orientation purpase anly．
Golead centerlines to be at defined by dimesion e ± 0.05 ．
－DRAWING NOT TO SCALE－

田DALLAS／VI／IKI／VI

PACKAGE RUTLINE，
42L THIN ${ }^{\text {QFN },} \mathbf{3} .5 \times 9 \times 0.8 \mathrm{~mm}$
APRROVAL
:---:

\qquad

