STDVE103A ### Adaptive 3.4 Gbps 3:1 TMDS/HDMI signal equalizer #### **Features** - Digital video signal equalizer with 3:1 HDMI switch - Compatible with the high-definition multimedia interface (HDMI) v1.3 digital interface - 340 MHz maximum clock speed operation supports all video formats with deep color at maximum refresh rates - 3.4 Gbps data rate per channel - Fully automatic adaptive equalizer for cable lengths up to 25 m - Selectable 50 Ω input termination to V_{CC}: 3.135 to 3.465 V - Low speed control lines supply to V_{DD}: 5 V (typ) - ESD HBM model: > ±5 KV for TMDS I/Os - Integrated open-drain I²C buffer for display data channel (DDC) - 5.3 V tolerant DDC and HPD I/Os - Lock-up free operation of I²C bus - 0 to 400 kHz clock frequency for I²C bus - Low capacitance TMDS channels - Equalizer for signal regeneration - Low output skew and jitter ### **Applications** - Advanced TVs supporting the HDMI/DVI standard - Front projectors, LCD TVs and PDPs - Monitors and notebooks - Set-top box and DVD players #### Table 1. Device summary ### **Description** The STDVE103A integrates a 4-channel 3.4 Gbps TMDS equalizer and a 3:1 switch to select one of the three HDMI ports. The high-speed data paths and flow-through pinout minimize the internal device jitter and simplify the board layout. The equalizer overcomes the jitter effects from lossy cables. The buffer/driver on the output can drive the TMDS output signals over long distances. Also, STDVE103A integrates the 50 Ω termination resistor on all the input channels to improve performance and reduce board space. The device can be placed in a low-power mode by disabling the output current drivers. The differential signal from the HDMI/DVI ports can be routed through the STDVE103A to guarantee good signal quality at the HDMI receiver. Designed for very low skew, jitter and low I/O capacitance, the switch preserves the signal integrity to pass the stringent HDMI compliance requirements. | Order code | Operating temperature | Package | Packaging | |--------------|-----------------------|---------|---------------| | STDVE103ABTR | -40°C to 85°C | TQFP64 | Tape and reel | | STDVE103ABTY | -40°C to 85°C | TQFP64 | Tray | June 2009 Doc ID 14911 Rev 4 1/44 Contents STDVE103A # **Contents** | 1 | Gen | eral description | |---|-------|--| | 2 | Bloc | k diagram7 | | | 2.1 | Application diagrams 8 | | 3 | Pin o | configuration | | 4 | Fund | ctional description12 | | | 4.1 | Adaptive equalizer | | | 4.2 | Operating modes | | | | 4.2.1 SEL operating modes | | | 4.3 | HPD pins 15 | | | 4.4 | DDC channels | | | 4.5 | I2C DDC line repeater | | | 4.6 | Power-down condition | | | 4.7 | Bias 17 | | | 4.8 | Timing between HPD and DDC | | 5 | Max | imum rating | | | 5.1 | Recommended operating conditions | | | 5.2 | DC electrical characteristics | | | 5.3 | DC electrical characteristics (I2C repeater) 24 | | | 5.4 | Dynamic switching characteristics | | | 5.5 | Dynamic switching characteristics (I2C repeater) | | 6 | Арр | lication information | | | 6.1 | Power supply sequencing | | | 6.2 | Power supply requirements | | | 6.3 | Differential traces | | | | 6.3.1 I2C lines application information | | 7 | Pack | kage mechanical data | | STDVE103A | | | Contents | | |-----------|------------------|--|----------|--| | 8 | Revision history | | . 43 | | List of tables STDVE103A # List of tables | l able 1. | Device summary | 1 | |-----------|---|---| | Table 2. | Pin description | 9 | | Table 3. | Gain frequency response | 2 | | Table 4. | SEL operating modes | 5 | | Table 5. | Bias parameter | 7 | | Table 6. | Absolute maximum ratings | 8 | | Table 7. | Thermal data1 | 8 | | Table 8. | Power supply characteristics | 9 | | Table 9. | DC specifications for TMDS differential inputs | 9 | | Table 10. | DC specifications for TMDS differential outputs | 0 | | Table 11. | DC specifications for SEL (S1, S2) inputs | 1 | | Table 12. | Input termination resistor | 1 | | Table 13. | External reference resistor | 1 | | Table 14. | DDC I/O pins (switch) | 2 | | Table 15. | Status pins (HPD_SINK)2 | 2 | | Table 16. | Status pins (HPD1, HPD2, HPD3) | 3 | | Table 17. | Supplies | 4 | | Table 18. | Input/output SDA, SCL | 4 | | Table 19. | Clock and data rate2 | 5 | | Table 20. | Equalizer gain | | | Table 21. | Differential output timings | 5 | | Table 22. | Skew times | 6 | | Table 23. | Turn-on and turn-off times | 6 | | Table 24. | DDC I/O pins | 6 | | Table 25. | Status pins (HPD_SINK, HPD1, HPD2, HPD3, S1, S2)2 | 6 | | Table 26. | Jitter | 7 | | Table 27. | I2C repeater | 8 | | Table 28. | ESD performance | 1 | | Table 29. | TQFP64 mechanical data | 1 | | Table 30. | Document revision history | 3 | 4 STDVE103A List of figures # **List of figures** | rigure i. | STDVETUSA block diagram | . / | |------------|--|-----| | Figure 2. | Equalizer functional diagram (one signal pair) | . 7 | | Figure 3. | DDC I2C bus repeater | | | Figure 4. | STDVE103A in a digital TV | . 8 | | Figure 5. | Pin configuration (TQFP64 package) | . 9 | | Figure 6. | STDVE103A gain vs. frequency | 13 | | Figure 7. | Test circuit for electrical characteristics | | | Figure 8. | TMDS output driver | 32 | | Figure 9. | Test circuit for HDMI receiver and driver | | | Figure 10. | Test circuit for turn off and turn off times | | | Figure 11. | Test circuit for short circuit output current | 34 | | Figure 12. | Propagation delays | | | Figure 13. | Turn-on and turn-off times | 35 | | Figure 14. | TSK(O) | | | Figure 15. | TSK(P) | 36 | | Figure 16. | TSK(D) | 36 | | Figure 17. | AC waveform 1 (I2C lines) | | | Figure 18. | Test circuit for AC measurements (I2C lines) | | | Figure 19. | I2C bus timing | | | Figure 20. | Typical application of I2C bus system | | | Figure 21. | TQFP64 package outline | 40 | | Figure 22. | TQFP64 tape and reel information | | | Figure 23. | TQFP64 tray drawing | 42 | | Figure 24. | TQPF64 tray drawing dimensions | 42 | General description STDVE103A ## 1 General description The STDVE103A is a TMDS/HDMI 3:1 switch with signal equalizer. The device is a HDMI switch featuring an integrated 4-channel 3.4 Gbps TMDS equalizer and 3:1 switch to select one of the three HDMI ports (either external ports or internal sources). The high-speed data paths and flow-through pinout minimize the internal device jitter and simplify the board layout. The equalizer provides compensation to overcome the intersymbol interference (ISI) jitter effects from lossy cables. The output driver buffers the TMDS output signals over long distances. Also, the STDVE103A integrates the 50 Ω termination resistor on all the input channels to improve performance and reduce board space. The device can operate in a low-power mode by disabling the output current drivers. The STDVE103A is ideal for advanced TV and STB applications supporting the HDMI/DVI standard. The differential signal from the HDMI/DVI ports can be routed through the STDVE103A to guarantee good signal quality at the HDMI receiver. Designed for very low skew, jitter and low I/O capacitance, the switch preserves the signal integrity to pass the stringent HDMI compliance requirements. The STDVE103A provides the ability to boost the incoming TMDS signal and drive it to a level which allows efficient signal recovery at the HDMI receiver. It is especially useful for boosting signals for longer distance transmission when the HDMI receiver is physically distant from the HDMI input port. STDVE103A Block diagram # 2 Block diagram Figure 1. STDVE103A block diagram Figure 2. Equalizer functional diagram (one signal pair) Block diagram STDVE103A Figure 3. DDC I²C bus repeater ## 2.1 Application diagrams Figure 4. STDVE103A in a digital TV STDVE103A Pin configuration ## 3 Pin configuration Table 2. Pin description | Pin number | Pin name | Туре | Function | | |------------|-----------------|-------------|--|--| | 1-2 | SDA3, SCL3 | I/O | Port3 DDC bus data and clock lines | | | 3 | GND | Power | Ground | | | 4-5 | B31, A31 | Input, TMDS | Port 3 differential inputs for channel 1 | | | 6 | V _{CC} | Power | Supply voltage (3.3 V ± 5%) | | | 7-8 | B32, A32 | Input, TMDS | Port 3 differential inputs for channel 2 | | | 9 | GND | Power | Ground | | | 10-11 | B33, A33 | Input, TMDS | Port 3 differential inputs for channel 3 | | | 12 | V _{CC} | Power | Supply voltage (3.3 V ± 5%) | | | 13-14 | B34, A34 | Input, TMDS | Port 3 differential inputs for channel 4 | | | 15 | GND | Power | Ground | | 577 Doc ID 14911 Rev 4 9/44 Pin configuration STDVE103A Table 2. Pin description (continued) | Pin number | Pin name | Туре | Function | | |------------|------------------|-----------------|---|--| | 16 | R _{EXT} | Analog | Connect to GND through a 4.7 K \pm 1% precision reference resistor. Sets the output current to generate the output voltage compliant with TMDS | | | 17-18 | Y4, Z4 | Output,
TMDS | Channel 4 differential outputs | | | 19 | V _{CC} | Power | Supply voltage (3.3 V ± 5%) | | | 20-21 | Y3, Z3 | Output,
TMDS | Channel 3 differential outputs | | | 22 | GND | Power | Ground | | | 23-24 | Y2, Z2 | Output,
TMDS | Channel 2 differential outputs | | | 25 | V _{CC} | Power | Supply voltage (3.3 V ± 5%) | | | 26-27 | Y1, Z1 | Output,
TMDS | Channel 1 differential outputs | | | 28 | GND | Power | Ground | | | 29 | SCL_SINK | I/O | Sink side DDC bus clock line | | | 30 | SDA_SINK | I/O | Sink side DDC bus data line | | | 31 | HPD_SINK | Input | Sink side hot plug detector input High: 5 V power signal asserted from source to sink and EDID is ready Low: No 5 V power signal is asserted from source to sink or EDID is
not ready | | | 32-33 | S1,S2 | Input | Source select inputs | | | 34 | NC | | No connect | | | 35 | HPD1 | Output | Port 1 hot plug detector output. | | | 36 | SDA1 | I/O | Port 1 DDC bus data line | | | 37 | SCL1 | I/O | Port 1 DDC bus clock line | | | 38-39 | B11, A11 | Input, TMDS | Port 1 differential inputs for channel 1 | | | 40 | V _{CC} | Power | Supply voltage (3.3 V ± 5%) | | | 41-42 | B12, A12 | Input, TMDS | Port 1 differential inputs for channel 2 | | | 43 | GND | Power | Ground | | | 44-45 | B13, A13 | Input, TMDS | Port 1 differential inputs for channel 3 | | | 46 | V _{CC} | Power | Supply voltage (3.3 V ± 5%) | | | 47-48 | B14, A14 | Input, TMDS | Port 1 differential inputs for channel 4 | | | 49 | V _{DD} | Power | Supply voltage (5.0 V \pm 10%) for DDC, HPD and source selector pins | | | 50 | HPD2 | Output | Port 2 hot plug detector output | | | 51 | SDA2 | I/O | Port 2 DDC bus data line | | STDVE103A Pin configuration Table 2. Pin description (continued) | Pin number | Pin name | Туре | Function | | |------------|-----------------|-------------|--|--| | 52 | SCL2 | I/O | Port 2 DDC bus clock line | | | 53-54 | B21, A21 | Input, TMDS | Port 2 differential inputs for channel 1 | | | 55 | V _{CC} | Power | Supply voltage (3.3 V ± 5%) | | | 56-57 | B22, A22 | Input, TMDS | Port 2 differential inputs for channel 2 | | | 58 | GND | Power | Ground | | | 59-60 | B23, A23 | Input, TMDS | Port 2 differential inputs for channel 3 | | | 61 | V_{CC} | Power | Supply voltage (3.3 V ± 5%) | | | 62-63 | B24, A24 | Input, TMDS | Port 2 differential inputs for channel 4 | | | 64 | HPD3 | | Port 3 hot plug detector output. | | ## 4 Functional description The STDVE103A routes physical layer signals for high bandwidth digital video and is compatible with low voltage differential signaling standards such as the TMDS. The device passes the differential inputs from a video source to a common display when it is in the active mode of operation. The device conforms to the TMDS standard on both inputs and outputs. The low on-resistance and low I/O capacitance of the switch in STDVE103A result in a very small propagation delay. The device integrates SPDT-type switches for 3 differential data TMDS channels and 1 differential clock channel. Additionally, it integrates the switches for DDC and HPD line switching with I²C repeater on the DDC lines. The I²C interface of the selected input port is linked to the I²C interface of the output port, and the hot plug detector (HPD) of the selected input port is output to HPD_SINK. For the unused ports, the I²C interfaces are isolated and the HPD pins are driven to L state. ### 4.1 Adaptive equalizer The equalizer dramatically reduces the intersymbol interference (ISI) jitter and attenuation from long or lossy transmission media. The inputs present high impedance when the device is not active or when V_{CC} is absent or 0 V. In all other cases, the 50 Ω termination resistors on input channels are present. This circuit helps to improve the signal eye pattern significantly. Shaping is performed by the gain stage of the equalizer to compensate the signal degradation and then the signals are driven on to the output ports. The equalizer is fully adaptive and automatic in function providing smaller gain at low frequencies and higher gain at high frequencies. The equalizer is optimized internally for an adaptive operation. Table 3. Gain frequency response | Frequency
(MHz) | Gain in dB | |--------------------|------------| | 225 | 3 | | 325 | 5 | | 410 | 6.5 | | 825 | 11 | | 1650 | 16 | Figure 6. STDVE103A gain vs. frequency The STDVE103A equalizer is fully adaptive and automatic in function. The equalizer's performance is optimized for all frequencies over the cable lengths from 1 m to 25 m. #### Input termination The STDVE103A integrates precise 50 $\Omega\pm5\%$ termination resistors, pulled up to V_{CC} , on all its differential input channels. External terminations are not required. This gives better performance and also minimizes the PCB board space. These on-chip termination resistors should match the differential characteristic impedance of the transmission line. Since the output driver consists of current steering devices, an output voltage is not generated without a termination resistor. Output voltage levels are dependent on the value of the total termination resistance. The STDVE103A produces TMDS output levels for point-to-point links that are doubly terminated (100 Ω at each end). With the typical 10 mA output current, the STDVE103A produces an output voltage of 3.3 - 0.5 V = 2.8 V when driving a termination line terminated at each end. The input terminations are selectable thus saving power for the unselected ports. #### **Output buffers** Each differential output of the STDVE103A drives external 50 Ω load (pull-up resistor) and conforms to the TMDS voltage standard. The output drivers consist of 10 mA differential current-steering devices. The driver outputs are short-circuit current limited and are high-impedance to ground when S1, S2 = HL or the device is not powered. The current steering architecture requires a resistive load to terminate the signal to complete the transmission loop from V_{CC} to GND through the termination resistor. Because the device switches the direction of the current flow and not voltage levels, the output voltage swing is determined by V_{CC} minus the voltage drop across the termination resistor. The output current drivers are controlled by the S1, S2 pin and are turned off when S1, S2 is a HL. A stable 10 mA current is derived by accurate internal current mirrors of a stable reference current which is generated by band-gap voltage across the REXT. The differential output driver provides a typical 10 mA current sink capability, which provides a typical 500 mV voltage drop across a 50 Ω termination resistor. 57 Doc ID 14911 Rev 4 13/44 ### **TMDS voltage levels** The TMDS interface standard is a signaling method intended for point-to-point communication over a tightly controlled impedance medium. The TMDS standard uses a lower voltage swing than other common communication standards, achieving higher data rates with reduced power consumption while reducing EMI emissions and system susceptibility to noise. The device is capable of detecting differential signals as low as 100 mV within the entire common mode voltage range. ### 4.2 Operating modes ### 4.2.1 SEL operating modes The active source is selected by configuring source select inputs, S1 and S2. The selected TMDS inputs from each port are switched through a 3-to-1 multiplexer. The I²C interface of the selected input port is linked to the I²C interface of the output port, and the hot plug detector (HPD) of the selected input port is output to HPD_SINK. Table 4. SEL operating modes | | Control pins | | I/O selected | Hot-plug detect status | | | |----|--------------|--|--|------------------------|----------|----------| | S2 | S1 | Y/Z | SCL_SINK
SDA_SINK | HPD1 HPD2 | | HPD3 | | Н | Н | A1/B1 terminations
of A2/B2 and A3/B3
are disconnected | SCL1
SDA1 | HPD_SINK | Z | Z | | Н | L | A2/B2 terminations
of A1/B1 and A3/B3
are disconnected | SCL2
SDA2 | Z | HPD_SINK | Z | | L | L | A3/B3 terminations
of A1/B1 and A2/B2
are disconnected | SCL3
SDA3 | Z | Z | HPD_SINK | | L | н | None (Z). All terminations are disconnected | None (Z).
Pulled high by
external
termination | Z | Z | Z | H: logic high; L: logic low; X: don't care; Z: high impedance ### 4.3 HPD pins The input pin HPD_SINK is 5 V tolerant, allowing direct connection to 5 V signals. The switch is able to pass both 0 V and 5 V signal levels. The HPD_SINK is an input pin while the HPD1, HPD2 and HPD3 are outputs. ### 4.4 DDC channels The DDC channels are designed with a bidirectional NMOS gate, providing 5 V signal tolerance. The 5 V tolerance allows direct connection to a standard I²C bus, thus eliminating the need for a level shifter. There should be external pull-up resistors on either side of the device on both the SCL and SDA lines. ### 4.5 I²C DDC line repeater The device contains two identical bidirectional open-drain, non-inverting buffer circuits that enable I 2 C DDC bus lines to be extended without degradation in system performance. The STDVE103A buffers both the serial data (DDC SDA) and serial clock (DDC SCL) on the I 2 C bus, while retaining all the operating modes and features of the I 2 C system. This enables two buses of 400 pF bus capacitance to be connected in an I 2 C application. These buffers are operational from a supply voltage of 3.0 to 3.6 V. The I²C bus capacitance limit of 400 pF restricts the number of devices and bus length. The STDVE103A enables the system designer to isolate the two halves of a bus, accommodating more I²C devices or longer trace lengths. It can also be used to run two buses, one at 5 V and the other at 3.3 V or a 400 kHz and 100 kHz bus, where the 100 kHz bus is isolated when 400 kHz operation of the other bus is required. The STDVE103A can be used to run the I²C bus at both 5 V and 3.3 V interface levels. Two or more STDVE103As cannot be connected in series. The STDVE103A design does not allow this configuration. Since there is no direction pin, slightly different "legal" low voltage levels are used to avoid lock-up conditions between the input and output. A valid low applied at the input of STDVE103A is propagated as a buffered low with a slightly higher value on the enabled outputs. When this buffered low is applied to another STDVE103A in series, the second STDVE103A will not recognize it as a valid low and will not propagate it as a buffered low again. The S1 and S2 (SEL) lines act as control signals for the corresponding A, B or C ports. Note that the
SEL line has an internal pull-down resistor. The SEL line should not change state during an I²C operation, because disabling during bus operation hangs the bus and enabling part way through a bus cycle could confuse the I²C parts being enabled. The SEL input should change state only when the global bus and the repeater port are in idle state, to prevent system failures. The output low levels for each internal buffer are approximately 0.5 V, but the input voltage of each internal buffer must be 70 mV or more below the output low level, when the output internally is driven low. This prevents a lock-up condition from occurring when the input low condition is released. As with the standard I^2C system, pull up resistors are required to provide the logic high levels on the buffered bus. The STDVE103A has standard open collector configuration of the I^2C bus. The size of the pull up resistors depends on the system, but each side of the repeater must have a pull up resistor. This part is designed to work with standard mode and fast mode I²C devices. Standard mode I²C devices only specify 3 mA output drive, this limits the termination current to 3 mA in a generic I²C system where standard mode devices and multiple masters are possible. Under certain conditions, higher termination currents can be used. #### 4.6 Power-down condition The HL combination of S1, S2 is used to disable most of the internal circuitry of STDVE103A that puts the device in a low power mode of operation. **______** #### **4.7** Bias The bandgap reference voltage over the external R_{EXT} reference resistor sets the internal bias reference current. This current and its factors (achieved by employing highly accurate and well matched current mirror circuit topologies) are generated on-chip and used by several internal modules. The 10 mA current used by the transmitter block is also generated using this reference current. It is important to ensure that the R_{EXT} value is within the $\pm 1\%$ tolerance range of its typical value. Table 5. Bias parameter | Parameter | Min | Тур | Max | Unit | |-----------------|-----|-----|-----|------| | Bandgap voltage | - | 1.2 | - | V | The output voltage swing depends on 3 components: supply voltage (V_{supply}), termination resistor (R_T) and current drive (I_{drive}). The supply voltage can vary from 3.3 V ±5%, termination resistor can vary from 50 Ω ±10%. The voltage on the output is given by: $$V_{\text{supply}} - I_{\text{drive}} \times R_{T}$$ The variation on I_{drive} must be controlled to ensure that the voltage on HDMI output is within the HDMI specification under all conditions. This is achieved when: with typical value centered at 500 mV. ## 4.8 Timing between HPD and DDC It is important to ensure that the I^2C DDC interface is ready by the time the HPD detection is complete. As soon as the discovery is finished by the HPD detection, the configuration data is exchanged between a source and sink through the I²C DDC interface. The STDVE003's DDC interface is ready for communication as soon as the power supply to the chip is present and stable. When the desired port is enabled and the chip is out of shutdown mode, the I²C DDC lines can be used for communication. Thus, as soon as the HPD detection sequence is complete, the DDC interface can be readily used. There is no delay between the HPD detection and I²C DDC interface to be ready. 57 Doc ID 14911 Rev 4 17/44 ## 5 Maximum rating Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 6. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |------------------|---|--------------|------| | V_{CC} | Supply voltage to ground | -0.5 to +4.0 | V | | V_{DD} | Supply voltage to Ground (DDC, HPD, S1, S2) | -0.5 to +6.0 | V | | | DC input voltage (TMDS ports) | 1.7 to +4.0 | V | | V _I | SDA1, SCL1, SDA2, SCL2, SDA3, SCL3,SDA_SINK, SCL_SINK, HPD_SINK, HPD1, HPD2, HPD3, S1, S2 | -0.5 to +6.0 | V | | Io | DC output current | 120 | mA | | T _{STG} | Storage temperature | -65 to +150 | °C | | TL | Lead temperature (10 sec) | 300 | °C | Table 7. Thermal data | | Symbol | Parameter | TQFP-64 | Unit | |---|---------------------------|--|---------|------| | Ī | $\Theta_{\! \mathrm{JA}}$ | Thermal coefficient (junction-ambient) | 35 | °C/W | ## 5.1 Recommended operating conditions ### 5.2 DC electrical characteristics T_A = -40 to +85 °C, V_{CC} = 3.3 V ± 5% ^(a) Table 8. Power supply characteristics | Cumbal | Parameter | Test condition | | Value | | Unit | |-----------------|---|--|-------|-------|-------|-------| | Symbol | Parameter | rest condition | Min | Тур | Max | Offic | | V _{CC} | Supply voltage | | 3.135 | 3.3 | 3.465 | V | | V _{DD} | Supply voltage | | 4.5 | 5.0 | 5.5 | V | | Icc | Supply current | All inputs/outputs are enabled. Inputs are terminated with 50 Ω to V _{CC} . V _{CC} = 3.465 V Data rate = 3.4 Gbps | - | - | 300 | mA | | I _{CC} | Supply current | S1, S2 = HL | - | - | 20 | mA | | I _{DD} | Supply current (V _{DD} supply) | | - | 2 | 5 | mA | Table 9. DC specifications for TMDS differential inputs | Symbol | Parameter | Test condition - | | Value | | Unit | |------------------|--|---|-----------------------|-------|------------------------|-------| | Symbol | | rest condition | Min | Тур | Max | Offic | | V _{TH} | Differential input high
threshold
(peak-to-peak) | $V_{CC} = 3.465 \text{ V}$
over the entire V_{CMR} | - | 0 | 150 | mV | | V _{TL} | Differential input low threshold | V _{CC} = 3.465 V
over the entire V _{CMR} | -150 | 0 | - | mV | | V _{ID} | Differential input
voltage
(peak-to-peak) ⁽¹⁾ | V _{CC} = 3.465 V | 150 | ı | 1560 | mV | | V _{CMR} | Common mode voltage range | | V _{CC} - 0.3 | | V _{CC} - 0.04 | V | | C _{IN} | Input capacitance | IN+ or IN- to GND
F = 1 MHz | - | 3.5 | - | pF | Differential output voltage is defined as I (OUT+ - OUT-) I. Differential input voltage is defined as I (IN+ - IN-) I. **577** Doc ID 14911 Rev 4 a. Typical parameters are measured at V_{CC} = 3.3 V, T_A = +25 °C. Table 10. DC specifications for TMDS differential outputs | Symbol | Parameter | Test condition | | Value | | Unit | |--------------------|---|--|----------------------|-------|----------------------|-------| | Symbol | Parameter | rest condition | Min | Тур | Max | Offic | | V _{OH} | Single-ended high level output voltage | | V _{CC} -10 | - | V _{CC} +10 | mV | | V _{OL} | Single-ended low level output voltage | | V _{CC} -600 | - | V _{CC} -400 | mV | | V _{swing} | Single ended output swing voltage | $V_{CC} = 3.3 \text{ V}$ $R_{TERM} = 50 \Omega$ | 400 | 500 | 600 | mV | | V _{OD} | Differential output
voltage
(peak-to-peak) ⁽¹⁾ | $V_{CC} = 3.3 \text{ V}$ $R_{TERM} = 50 \Omega$ | 800 | 1000 | 1200 | mV | | l _{OL} | Differential output low level current | | 8 | 10 | 12 | mA | | ll _{SC} l | Output driver short-
circuit current
(continuous) | OUT± = GND
through a 50 Ω
resistor.
See <i>Figure 11</i> | - | - | 12 | mA | | C _{OUT} | Output capacitance | OUT+ or OUT-
to GND when tri-
state
F = 1 MHz | - | 5.5 | - | pF | ^{1.} Differential output voltage is defined as I (OUT+ - OUT-) I. Differential input voltage is defined as I (IN+ - IN-) I Doc ID 14911 Rev 4 20/44 Table 11. DC specifications for SEL (S1, S2) inputs | Symbol | Parameter | Test condition | | Value | | - Unit | |-----------------|--------------------------|--|------|-------|-----|--------| | Symbol | Farameter | rest condition | Min | Тур | Max | Offic | | V _{IH} | HIGH level input voltage | High level guaranteed | 2.0 | - | _ | V | | V _{IL} | LOW level input voltage | Low level guaranteed | -0.5 | ı | 0.8 | ٧ | | V _{IK} | Clamp diode voltage | $V_{CC} = 3.465 \text{ V}$
$I_{IN} = -18 \text{ mA}$ | -1.2 | -0.8 | _ | ٧ | | I _{IH} | Input high current | V _{CC} = 3.465 V
V _{IN} = V _{CC} | -5 | _ | +5 | μΑ | | I _{IL} | Input low current | V _{CC} = 3.465 V
V _{IN} = GND | -5 | _ | +5 | μΑ | | C _{IN} | Input capacitance | Pin to GND
F = 1 MHz | _ | 3.5 | _ | pF | Table 12. Input termination resistor | Symbol | Parameter | Test condition | | Value | | Unit | |-------------------|---|--------------------------|----|-------|----|------| | R _{TERM} | Differential input termination resistor on IN± channels relative to V _{CC} | I _{IN} = -10 mA | 45 | 50 | 55 | Ω | Table 13. External reference resistor | Symbol | Parameter | Test condition | | Value | | Unit | |------------------|---|-----------------------|-----|-------|-----|-------| | Symbol | raiametei | rest condition | Min | Тур | Max | Oilit | | R _{EXT} | Resistor for TMDS compliant voltage swing range | Tolerance for R = ±1% | - | 4.7 | - | ΚΩ | Table 14. DDC I/O pins (switch) | Symbol | Parameter | Test condition | | Value | | Unit | |---------------------|--------------------------
--|-----|-------|-----|------| | Symbol | Parameter | rest condition | Min | Тур | Max | Onit | | V _{I(DDC)} | Input voltage | | GND | _ | 5.3 | V | | | Input leakage current | V _{CC} = 3.465 V
A, B, C ports = 5.3 V
Y port = 0.0 V
Switch is isolated | _ | _ | 6 | μА | | II(leak) | | V _{CC} = 3.465 V
A, B, C ports = 3.3 V
Y port = 0.0 V
Switch is isolated | _ | _ | 2 | μА | | 6 | | V_{l} =0 V
F = 1 MHz
Switch disabled | - | 5 | - | pF | | C _{I/O} | Input/output capacitance | V_{I} =0 V
F = 1 MHz
Switch enabled | - | 9 | _ | pF | Table 15. Status pins (HPD_SINK) | Symbol | Parameter | Test condition | Value | | | Unit | |-----------------|--------------------------|--|-------|-----|-----|-------| | Syllibol | raiailletei | rest condition | Min | Тур | Max | Oille | | V _{IH} | High level input voltage | V _{CC} = 3.3 V
High level guaranteed | 2.0 | - | 5.3 | V | | V _{IL} | Low level input voltage | V _{CC} = 3.3 V
Low level guaranteed | GND | - | 0.8 | V | | 1 | Input leakage current | V _{CC} = 3.465 V
Y = 5.3 V | _ | - | 4 | μΑ | | I(leak) | | V _{CC} = 3.465 V
Y = 3.3 V | _ | - | 2 | μА | Table 16. Status pins (HPD1, HPD2, HPD3)⁽¹⁾ | Cumbal | Parameter | Test condition | Value | | | Unit | |------------------|---|--|-------|-----|-----|------| | Symbol | Parameter | rest condition | Min | Тур | Max | Unit | | V | Voltage | | GND | _ | 5.3 | V | | | Input/output capacitance | V _I = 0 V
F = 1 MHz
Switch disabled | - | 5 | _ | pF | | C _{I/O} | | V _I = 0 V
F = 1 MHz
Switch enabled | - | 9 | _ | pF | | V _{OL} | Output low voltage
(open drain I/Os) | V _{CC} = 3.3 V
I _{OL} = 8 mA | _ | _ | 0.4 | V | ^{1.} Typical parameters are measured at V_{CC} = 3.3 V, T_A = +25 °C. # 5.3 DC electrical characteristics (I²C repeater) (T_A = -40 to +85 °C, V_{CC} = 3.3 V \pm 5%, GND = 0 V; unless otherwise specified) Table 17. Supplies | Symbol | Parameter | Test condition | | Unit | | | |-----------------|-------------------|----------------|-------|------|-------|---| | Symbol | Farameter | rest condition | Min | Тур | Max | | | V _{CC} | DC supply voltage | | 3.135 | 3.3 | 3.465 | V | Table 18. Input/output SDA, SCL | Cumbal | Parameter | Test condition | | Value | | Unit | |------------------|---|--|---------------------|-------|---------------------|------| | Symbol | Parameter | rest condition | Min | Тур | Max | Unit | | V _{IH} | High level input voltage | | 0.7 V _{CC} | - | 5.3 | V | | V _{IL} | Low level input voltage ⁽¹⁾ | | -0.5 | ı | 0.3 V _{CC} | V | | V _{ILc} | Low level input voltage contention ⁽¹⁾ | | -0.5 | - | 0.4 | V | | V _{IK} | Input clamp voltage | I _I = -18 mA | _ | _ | -1.2 | V | | I _{IL} | Input current low (SDA, SCL) | Input current low (SDA, SCL) | _ | - | 1 | μΑ | | | Input current high | V _I = 3.465 V
(SDA, SCL) | _ | - | 10 | μΑ | | l _{IH} | (SDA, SCL) | V _I = 5.3 V
(SDA, SCL) | _ | - | 10 | μΑ | | V | LOW-level output | I _{OL} = 3 mA | | | 0.4 | V | | V _{OL} | voltage | I _{OL} = 6 mA | | | 0.65 | V | | la | Output high level | V _O = 3.6 V;
driver disabled | _ | _ | 10 | μΑ | | Гон | leakage current | V _O = 5.3 V;
driver disabled | _ | _ | 10 | μΑ | | C _I | Input capacitance | V _I = 3 V or 0 V | _ | 6 | 7 ⁽²⁾ | pF | V_{IL} specification is for the first low level seen by the SDA/SCL lines. V_{ILC} is for the second and subsequent low levels seen by the SDA/SCL lines. ^{2.} The SCL/SDA C_I is about 200 pF when $V_{CC} = 0$ V. The STDVE103A should be used in applications where power is secured to the repeater but an active bus remains on either set of the SDA/SCL pins. # 5.4 Dynamic switching characteristics^(b) $\rm T_A$ = -40 to +85 °C, $\rm V_{CC}$ = 3.3 V ± 5%, $\rm R_{TERM}$ = 50 $\rm \Omega$ ± 5%, $\rm C_L$ = 5 pF). Typical values are at T_A = +25 °C and V_{CC} = 3.3 V. #### Table 19. Clock and data rate | Symbol | Parameter | Test condition - | | Unit | | | |-------------------|--|------------------|-----|------|-----|-------| | | | | Min | Тур | Max | Oilit | | f _{CK} | Clock frequency
(1/10th of the
differential data rate) | | 25 | - | 340 | MHz | | D _{rate} | Signaling rate | | _ | _ | 3.4 | Gbps | ### Table 20. Equalizer gain | Symbol | Parameter | Test condition | | Unit | | | |--------|----------------|----------------|-----|------|-----|-------| | | | rest condition | Min | Тур | Max | Oille | | G_EQ | Equalizer gain | At 225 MHz | _ | 10 | _ | dB | | | | At 340 MHz | _ | 15 | _ | dB | ### Table 21. Differential output timings | Symbol | Parameter | Test condition | | | Unit | | |------------------|--|---|-----|-----|------|---------| | | | | Min | Тур | Max | O i iii | | t _r | Differential data and | 20% to 80% of V _{OD} | 75 | 150 | 240 | ps | | t _f | clock output rise/fall
times | 80% to 20% of V _{OD} | 75 | 150 | 240 | ps | | t _{PLH} | Differential low to high propagation delay | Alternating 1 and 0 pattern at slow and fast data rates | 250 | - | 800 | ps | | t _{PHL} | Differential high to low propagation delay | Measure at 50% V _{OD} between input to output | 250 | _ | 800 | ps | Doc ID 14911 Rev 4 25/44 b. The timing values in this section are tested during characterization and are guaranteed by design and simulation. Not tested in production. Table 22. Skew times | Symbol | Parameter | Test condition - | Value | | | Unit | | |---------------------|---|--|-------|-----|-----|-------|--| | Symbol | Parameter | | Min | Тур | Max | Offic | | | t _{SK(O)} | Inter-pair channel-to-
channel output skew | | - | - | 100 | ps | | | t _{SK(P)} | Pulse skew | l t _{PLH} - t _{PHL} l | _ | 25 | 80 | ps | | | t _{SK(D)} | Intra-pair differential skew | | _ | _ | 50 | ps | | | t _{SK(CC)} | Output channel to channel skew | Difference in
propagation
delay
(t _{PLH} or t _{PHL})
among all output
channels | _ | 50 | 125 | ps | | ### Table 23. Turn-on and turn-off times | Symbol | Parameter | Test condition | Value | | | Unit | |------------------|--------------------------|---|-------|-----|-----|-------| | | | | Min | Тур | Max | Offic | | t _{ON} | TMDS output enable time | Time from OE_N to OUT± change from tristate to active | - | 12 | 20 | ns | | t _{OFF} | TMDS output disable time | Time from OE_N to OUT± change from active to tri- state | _ | 6 | 10 | ns | ### Table 24. DDC I/O pins | Symbol | Parameter | Test condition | | Unit | | | | |----------------------|-------------|----------------|-----|------|-----|-------|--| | Symbol | raidilletei | rest condition | Min | Тур | Max | Offic | | | Refer to Section 5.5 | | | | | | | | ### Table 25. Status pins (HPD_SINK, HPD1, HPD2, HPD3, S1, S2) | Symbol | Parameter | Test condition | | | Unit | | |----------------------|---|---|-----|-----|------|----| | Symbol | raiametei | rest condition | Min | Тур | Max | | | t _{PD(HPD)} | Propagation delay
(from Y_HPD to the
active port of HPD) | $C_L = 10 \text{ pF},$ $R_{PU} = 1 \text{ K}\Omega$ | - | 150 | - | ns | | T _{ON/OFF} | Switch time
(from port select to the
latest valid status of
HPD) | C _L = 10 pF | _ | 50 | _ | ns | Table 26. Jitter | Symbol | Parameter | Test condition | | Unit | | | |------------------|-----------------------------|--|-----|------|-----|----------| | Symbol | raiailletei | rest condition | Min | Тур | Max | Oilit | | t _{JIT} | Total jitter ⁽¹⁾ | PRBS pattern
at 1.6 Gbps
(800 MHz) | - | 35 | - | ps (p-p) | Total jitter is measured peak-to-peak with a histogram including 3500 window hits. Stimulus and fixture jitter has been subtracted. Input differential voltage = V_{ID} = 500 mV, PRBS random pattern at 1.65 Gbps, t_r=t_r=50 ps (20% to 80%). Jitter parameter is not production-tested but guaranteed through characterization on a sample-to-sample basis. # 5.5 Dynamic switching characteristics (I²C repeater) T_A = -40 to +85 °C, V_{CC} = 3.3 V ± 5%. Typical values are at T_A = +25 °C and V_{CC} = 3.3 V. Table 27. I²C repeater⁽¹⁾ | Symbol | Davamatar | Took condition | | Value | | Unit | |------------------|----------------------------------|--|-----|-------|-----|------| | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | | f | I ² C clock frequency | Standard mode | _ | _ | 100 | kHz | | f _{SCL} | T C clock frequency | Fast mode | _ | _ | 400 | kHz | | t _{LOW} | Low duration on SCL pin | 100 KHz See Figure 19 Voltage on line = 5V Cmax=400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20% time intervals on both transitions. | 4.7 | _ | _ | μѕ | | | | 400 KHz See Figure 19 Voltage on line = 5V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20% time intervals on both transitions. | 1.3 | _ | _ | μѕ | | | Low duration on SCL pin | 100 KHz See Figure 19 Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20% time intervals on both transitions. | 4.7 | _ | - | μs | | t _{LOW} | | 400 KHz See Figure 19 Voltage on
line = 3.3 V, Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20% time intervals on both transitions. | 1.3 | - | - | μs | Table 27. I²C repeater⁽¹⁾ (continued) | Oh al | Davie menter. | Took o an distant | | Value | | Unit | |--|--|---|-----|-------|-----|------| | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | | t _{HIGH} High duration on SCL pin | High duration on SCI pin | 100 KHz See Figure 19 Voltage on line = 5 V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20% time intervals on both transitions | 4.0 | _ | - | μѕ | | | 400 KHz See Figure 19 Voltage on line = 5 V Cmax = 400 pF, Rmax=2 K Depends on input signal rise time. Includes the 20% time intervals on both transitions | 0.6 | _ | ı | μѕ | | | | t _{HIGH} High duration on SCL pin | 100 KHz Refer section 14.12, Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20% time intervals on both transitions | 4.0 | _ | ı | μs | | HIGH | | 400 KHz See Figure 19 Voltage on line = 3.3 V, Cmax=400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20% time intervals on both transitions | 0.6 | _ | - | μs | | t _{PHL} | Propagation delay | 400 KHz
Waveform 1 (<i>Figure 17</i>)
Voltage on line = 5 V,
Cmax = 400 pF, Rmax = 2 K | _ | _ | 250 | μs | | t _{PLH} | Propagation delay | 400 KHz
Waveform 1 (<i>Figure 17</i>)
Voltage on line = 5 V,
Cmax = 400 pF, Rmax = 2 K | _ | _ | 300 | μs | | t _{PHL} | Propagation delay | 400 KHz
Waveform 1 (<i>Figure 17</i>)
Voltage on line = 3.3 V,
Cmax = 400 pF, Rmax = 2 K | _ | _ | 250 | ns | Table 27. I²C repeater⁽¹⁾ (continued) | Combal | Parameter | Test condition | | Value | | Unit | |------------------|---------------------------------|---|-----|-------|-----|------| | Symbol | Parameter | rest condition | Min | Тур | Max | Unit | | t _{PLH} | Propagation delay | 400 KHz
Waveform 1 (<i>Figure 17</i>)
Voltage on line = 3.3 V,
Cmax = 400 pF, Rmax = 2 K | - | - | 450 | ns | | t _{PHL} | Propagation delay | 100 KHz
Waveform 1 (<i>Figure 17</i>)
Voltage on line = 5 V,
Cmax = 400 pF, Rmax = 2 K | _ | _ | 250 | ns | | t _{PLH} | Propagation delay | 100 KHz
Waveform 1 (<i>Figure 17</i>)
Voltage on line = 5 V,
Cmax = 400 pF, Rmax = 2 K | _ | I | 300 | ns | | t _{PHL} | Propagation delay | 100 KHz
Waveform 1 (<i>Figure 17</i>)
Voltage on line = 3.3 V,
Cmax = 400 pF, Rmax = 2 K | _ | I | 250 | ns | | t _{PLH} | Propagation delay | 100 KHz
Waveform 1 (<i>Figure 17</i>)
Voltage on line = 3.3 V,
Cmax = 400 pF, Rmax = 2 K | _ | ı | 450 | ns | | | Output fall time | 400 KHz
Waveform 1 (<i>Figure 17</i>) ⁽²⁾
Voltage on line = 5 V
Cmax = 400 pF, Rmax = 2 K | _ | _ | 300 | ns | | t _f | Output fall life | 400 KHz
Waveform 1 ⁽²⁾
Voltage on line = 3.3 V
Cmax = 400pF, Rmax = 2 K | _ | - | 300 | ns | | t. | t _f Output fall time | 100 KHz
Waveform 1 (<i>Figure 17</i>) ⁽²⁾
Voltage on line = 5 V
Cmax = 400 pF, Rmax = 2 K | _ | - | 300 | ns | | t _f | | 100 KHz
Waveform 1 (<i>Figure 17</i>) ⁽²⁾
Voltage on line = 3.3 V
Cmax = 400 pF, Rmax = 2 K | _ | _ | 300 | ns | Table 27. I²C repeater⁽¹⁾ (continued) | Cymbol | Parameter | Test condition | | | Unit | | |------------------|------------------|---|-----|-----|------|------| | Symbol | | rest condition | Min | Тур | Max | Unit | | t _r | Output rise time | 400 KHz
Waveform 1 (<i>Figure 17</i>) ⁽²⁾
Voltage on line = 5 V
Cmax = 400 pF, Rmax = 2 K | - | _ | 300 | ns | | | | 400 KHz
Waveform 1 (<i>Figure 17</i>) ⁽²⁾
Voltage on line = 3.3 V
Cmax = 400 pF, Rmax = 2 K | _ | _ | 300 | ns | | t _r O | Output rise time | 100 KHz
Waveform 1, ⁽²⁾
Voltage on line = 5 V
Cmax = 400 pF, Rmax = 2 K | - | _ | 1000 | ns | | | | 100 KHz
Waveform 1 (<i>Figure 17</i>) ⁽²⁾
Voltage on line = 3.3 V
Cmax = 400 pF, Rmax = 2 K | - | _ | 1000 | ns | All the timing values are tested during characterization and are guaranteed by design and simulation. Not tested in production. Table 28. ESD performance | Symbol | Parameter | Test conditions | Min | Тур | Max | Unit | |--------|------------|------------------|-----|-----|-----|------| | ESD | TMDS I/Os | Human body model | _ | ±5 | - | kV | | (HBM) | Other I/Os | Human body model | _ | ±2 | _ | kV | The t_r transition time is specified with maximum load of 2 kΩ pull-up resistance and 400 pF load capacitance. Different load resistance and capacitance will alter the RC time constant, thereby changing the propagation delay and transition times. Refer to Figure 9. Figure 7. Test circuit for electrical characteristics - 1. C_L = load capacitance: include jig and probe capacitance. - 2. R_T = termination resistance; should be equal to Z_{OUT} of the pulse generator. Figure 8. TMDS output driver - 1. Z_O = characteristic impedance of the cable. - 2. R_T = termination resistance: should be equal to Z_O of the cable. Both are equal to 50_W . Vcc Rт Rт Α C_L = TMDS receiver TMDS driver 0.5pF Vcc VA V_{Y} В $\bigcirc_{\overline{Z}}$ Rт $V_{\text{ID}} = V_{\text{A}} - V_{\text{B}}$ Vz $V_{\text{Swing}} = V_{\text{Y}} - V_{\text{Z}}$ Figure 9. Test circuit for HDMI receiver and driver 1. $R_T = 50 \Omega$ 47/ 1.15 V 1.0 V 1.15 V 1.0 Figure 10. Test circuit for turn off and turn off times 1. C_L = 5 pF Figure 11. Test circuit for short circuit output current Figure 12. Propagation delays Figure 13. Turn-on and turn-off times Figure 14. TSK(O) Figure 15. TSK(P) Figure 16. TSK(D) Figure 17. AC waveform 1 (I²C lines) Figure 18. Test circuit for AC measurements (I²C lines) Figure 19. I²C bus timing 577 Doc ID 14911 Rev 4 37/44 ## 6 Application information ### 6.1 Power supply sequencing Proper power-supply sequencing is advised for all CMOS devices. It is recommended to always apply V_{CC} before applying any signals to the input/output or control pins. ### 6.2 Power supply requirements Bypass each of the V_{CC} pins with 0.1 μ F and 1 nF capacitors in parallel as close to the device as possible, with the smaller-valued capacitor as close to the V_{CC} pin of the device as possible. All V_{CC} pins can be tied to a single 3.3 V power source. A 0.01 μ F capacitor is connected from each V_{CC} pin directly to ground to filter supply noise. The maximum power supply variation can only be $\pm 5\%$ as per the HDMI specifications. The maximum tolerable noise ripple on 3.3 V supply must be within a specified limit. ### 6.3 Differential traces The high-speed TMDS inputs are the most critical parts for the device. There are several considerations to minimize discontinuities on these transmission lines between the connectors and the device. - (a) Maintain 100- Ω differential transmission line impedance into and out of the STDVE103A. - (b) Keep an uninterrupted ground plane below the high-speed I/Os. - (c) Keep the ground-path vias to the device as close as possible to allow the shortest return current path. - (d) Layout of the TMDS differential inputs should be with the shortest stubs from the connectors. Output trace characteristics affect the performance of the STDVE103A. Use controlled impedance traces to match trace impedance to both the transmission medium impedance and termination resistor. Run the differential traces close together to minimize the effects of the noise. Reduce skew by matching the electrical length of the traces. Avoid discontinuities in the differential trace layout. Avoid 90 degree turns and minimize the number of vias to further prevent impedance discontinuities. #### I²C lines application information 6.3.1 A typical application is shown in the figure below. In the example, the system master is running on a 3.3 V I²C-bus while the slave is connected to a 5 V bus. Both buses run at 100 kHz unless the slave bus is isolated and then the master bus can run at 400 kHz. Master devices can be placed on either bus. Figure 20. Typical application of I²C bus system The STDVE103A DDC lines are 5 V tolerant; so it does not require any extra circuitry to translate between the different bus voltages. # 7 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark. Table 29. TQFP64 mechanical data | Cumbal | Millimeters | | | | | |--------|-------------|------|-------|--|--| | Symbol | Min | Тур | Max | | | | А | _ | _ | 1.20 | | | | A1 | 0.05 | 0.10 | 0.15 | | | | A2 | 0.95 | 1 | 1.05 | | | | b | 0.17 | 0.22 | 0.27 | | | | С | 0.09 | 0.15 | 0.20 | | | | D | 11.80 | 12 | 12.20 | | | | D1 | 9.80 | 10 | 10.20 | | | | D3 | _ | 7.50 | _ | | | | E | 11.80 | 12 | 12.20 | | | | E1 | 9.80 | 10 | 10.20 | | | | E3 | _ | 7.50 | _ | | | | е | - | 0.50 | _ | | | | L | 0.45 | 0.60 | 0.75 | | | | L1 | _ | 1 | _ | | | | K | 0° | _ | 7° | | | Figure 22. TQFP64 tape and reel information Figure 23. TQFP64 tray drawing Figure 24. TQPF64 tray drawing dimensions STDVE103A Revision history # 8 Revision history Table 30. Document revision history | Date | Revision | Changes | |--------------|----------
---| | 21-Jul-2008 | 1 | Initial release. | | 09-Sept-2008 | 2 | Changed Table 1: Device summary on page 1 to add new order code. Modified the hot-plug detect status in Table 4: SEL operating modes on page 15. Updated ESD information in the Features section and Table 28: ESD performance on page 31 Added TQFP64 tray drawing in Figure 23: TQFP64 tray drawing on page 42 and Figure 24: TQPF64 tray drawing dimensions on page 42. | | 27-Mar-2009 | 3 | Updated: Features section and thermal junction value in <i>Chapter 5: Maximum rating</i> . | | 01-Jun-2009 | 4 | Updated: Table 10. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com