2.5 Gbps / 5.0 Gbps 4 Lane PCI Express Repeater with Equalization and De-Emphasis

General Description

The DS50PCI402 is a low power, 4 lane bidirectional buffer/ equalizer designed specifically for PCI Express Gen1 and Gen2 applications. The device performs both receive equalization and transmit de-emphasis, allowing maximum flexibility of physical placement within a system. The receiver is capable of opening an input eye that is completely closed due to inter-symbol interference (ISI) induced by the interconnect medium.
The transmitter de-emphasis level can be set by the user depending on the distance from the DS50PCI402 to the PCI Express endpoint. The DS50PCI402 contains PCI Express specific functions such as Transmit Idle, RX Detection, and Beacon signal pass through.
The device provides automatic receive detection circuitry which controls the input termination impedance. By automatically reflecting the current load impedance seen on the outputs back to the corresponding inputs the DS50PCI402 becomes completely transparent to both the PCle root complex and endpoint. An internal rate detection circuit is included to detect if an incoming data stream is at Gen2 data rates, and adjusts the de-emphasis on it's output accordingly. The signal conditioning provided by the device allows systems to upgrade from Gen1 data rates to Gen2 without reducing their physical reach. This is true for FR4 applications such as backplanes, as well as cable interconnect.

Features

- Input and Output signal conditioning increases PCle reach in backplanes and cables
■ 0.09 UI of residual deterministic jitter at 5Gbps after 42" of FR4 (with Input EQ)
- 0.11 UI of residual deterministic jitter at 5 Gbps after 7 m of PCle Cable (with Input EQ)
■ 0.09 UI of residual deterministic jitter at 5Gbps with 28 " of FR4 (with Output DE)
- 0.13 UI of residual deterministic jitter at 5 Gbps with 7 m of PCle Cable (with Output DE)
- Adjustable Transmit VOD 800 to 1200 mVp -p
- Automatic and manual Receiver Detection and input termination control circuitry
- Automatic power management on an individual lane basis via SMBus
- Adjustable electrical idle detect threshold.
- Data rate optimized 3-stage equalization to 27 dB gain
- Data rate optimized 6 -level 0 to 12 dB transmit deemphasis
- Flow-thru pinout in $10 \mathrm{~mm} \times 5.5 \mathrm{~mm} 54$-pin leadless LLP package
- Single supply operation at 2.5 V
- $>6 \mathrm{kV}$ HBM ESD rating
- -10 to $85^{\circ} \mathrm{C}$ operating temperature range

Typical Application

Pin Diagram

Ordering Information

DS50PCI402 Pin Diagram 54 lead

NSID	Qty	Spec	Package
DS50PCI402SQ	Tape \& Reel Supplied As 2,000 Units	NOPB	SQA54A
DS50PCI402SQE	Tape \& Reel Supplied As 250 Units	NOPB	SQA54A

Pin Descriptions

Pin Name	Pin Number	I/O, Type	Pin Description
Differential High Speed I/O's			
$\begin{aligned} & \hline \text { IA_0+, IA_0-, } \\ & \text { IA_1+, IA_1-, } \\ & \text { IA_2+, IA_2-, } \\ & \text { I_3+, IA_3- } \end{aligned}$	$\begin{aligned} & \hline 10,11 \\ & 12,13 \\ & 15,16 \\ & 17,18 \end{aligned}$	I, CML	Inverting and non-inverting CML differential inputs to the equalizer. A gated on-chip 50Ω termination resistor connects INA_0+ to VDD and INA_0- to VDD when enabled.
$\begin{aligned} & \text { OA_0+, OA_0-, } \\ & \text { OA_1+, OA_1-, } \\ & \text { OA_2+, OA_2-, } \\ & \text { OA_3+, OA_3- } \end{aligned}$	$\begin{aligned} & 35,34 \\ & 33,32 \\ & 31,30 \\ & 29,28 \end{aligned}$	O,LPDS	Inverting and non-inverting low power differential signal (LPDS) 50Ω driver outputs with de-emphasis. Compatible with AC coupled CML inputs.
$\begin{aligned} & \text { IB_0+, IB_0- }, \\ & \text { IB_1+, IB_1-, } \\ & \text { IB_2+, IB_2-, } \\ & \text { IB_3+, IB_3- } \end{aligned}$	$\begin{aligned} & 45,44 \\ & 43,42 \\ & 40,39 \\ & 38,37 \end{aligned}$	I, CML	Inverting and non-inverting CML differential inputs to the equalizer. A gated on-chip 50Ω termination resistor connects INB_0+ to VDD and INB_0- to VDD when enabled.
$\begin{aligned} & \text { OB_0+, OB_0-, } \\ & \text { OB_1+, OB_1-, } \\ & \text { OB_2+, OB_2-, } \\ & \text { OB_3+, OB_3- } \end{aligned}$	$\begin{aligned} & 1,2 \\ & 3,4 \\ & 5,6 \\ & 7,8 \end{aligned}$	O,LPDS	Inverting and non-inverting low power differential signal (LPDS) 50Ω driver outputs with de-emphasis. Compatible with AC coupled CML inputs.
Control Pins - Shared (LVCMOS)			
ENSMB	48	I, LVCMOS w/ internal pulldown	System Management Bus (SMBus) enable pin. When pulled high provide access internal digital registers that are a means of auxiliary control for such functions as equalization, de-emphasis, VOD, rate, and idle detection threshold. When pulled low, access to the SMBus registers are disabled and SMBus function pins are used to control the Equalizer and De-Emphasis. Please refer to "SMBus configuration Registers" section and Electrical Characteristics - Serial Management Bus Interface for detail information.
ENSMB = 1 (SMBUS MODE)			
SCL	50	I, LVCMOS	ENSMB = 1 SMBUS clock input pin is enabled. External pull-up resistor maybe needed. Refer to RTERM in the SMBus specification.
SDA	49	I, LVCMOS, O, Open Drain	ENSMB = 1 The SMBus bi-directional SDA pin is enabled. Data input or open drain output. External pull-up resistor is required. Refer to $\mathrm{R}_{\text {TERM }}$ in the SMBus specification.
AD0-AD3	54, 53, 47, 46	I, LVCMOS w/ internal pulldown	$\text { ENSMB = } 1$ SMBus Slave Address Inputs. In SMBus mode, these pins are the user set SMBus slave address inputs. See section System Management Bus (SMBus) and Configuration Registers for additional information.
ENSMB = 0 (NORMAL PIN MODE)			
$\begin{aligned} & \text { EQAO, EQA1 } \\ & \text { EQB0, EQB1 } \end{aligned}$	$\begin{aligned} & 20,19 \\ & 46,47 \end{aligned}$	I,FLOAT, LVCMOS	EQA/B,0/1 controls the level of equalization of the A / B sides as shown in. The EQA/B pins are active only when ENSMB is de-asserted (Low). Each of the $4 \mathrm{~A} / \mathrm{B}$ channels have the same level unless controlled by the SMBus control registers. When ENSMB goes high the SMBus registers provide independent control of each lane, and the EQB0/B1 pins are converted to SMBUS AD2/AD3 inputs.

Pin Name	Pin Number	I/O, Type	Pin Description
DEMAO, DEMA1 DEMB0, DEMB1	49,50 53,54 I,FLOAT, LVCMOS	DEMA/B ,0/1 controls the level of de-emphasis of the A/B sides as shown in. The DEMA/B pins are only active when ENSMB is de-asserted (Low). Each of the 4 A/B channels have the same level unless controlled by the SMBus control registers. When ENSMB goes High the SMBus registers provide independent control of each lane and the DEM pins are converted to SMBUS AD0/AD1 and SCL/SDA inputs.	
RATE			

Functional Description

The DS50PCI402 is a low power media compensation 4 lane repeater optimized for PCI Express Gen 1 and Gen 2 media including lossy FR-4 printed circuit board backplanes and balanced cables. The DS50PCI402 operates in two modes: Pin Control Mode (ENSMB = 0) and SMBus Mode (ENSMB $=1$).
Pin Control Mode:
When in pin mode (ENSMB $=0$), the repeater is configurable with external pins. Equalization and de-emphasis can be selected via pin for each side independently. When de-emphasis is asserted VOD is automatically increased per the DeEmphasis table below for improved performance over lossy media. The receiver detect pins RXDETA/B provide manual control for input termination (50Ω or $>50 \mathrm{~K} \Omega$). Rate optimization is also pin controllable, with pin selections for 2.5 Gbps , 5Gbps, and auto detect. The receiver electrical idle detect threshold is also programmable via an optional external resistor on the SD_TH pin.
SMBUS Mode:
When in SMBus mode the equalization, de-emphasis, and termination disable features are all programmable on a indi-
vidual lane basis, instead of grouped by sides as in the pin mode case. Upon assertion of ENSMB the RATE, EQx and DEMx functions revert to register control immediately. The EQx and DEMx pins are converted to ADO-AD3 SMBus address inputs. The other external control pins remain active unless their respective registers are written to and the appropriate override bit is set, in which case they are ignored until ENSMB is driven low. On powerup and when ENSMB is driven low all registers are reset to their default state. If PRSNT is asserted while ENSMB is high, the registers retain their current state.
Equalization settings accessible via the pin controls were chosen to meet the needs of most PCle applications. If additional fine tuning or adjustment is needed, additional equalization settings can be accessed via the SMBus registers. Each input has a total of 24 possible equalization settings. The tables show a typical gain for each gain stage (GST[1:0]) and boost level (BST[2:0]) combination. When using SMBus mode, the Equalization and De-Emphasis levels are set using registers.

TABLE 1. Equalization Settings with GST=1 for Pins or SMBus Registers

EQ1	EQ0	EQ Setting		EQ Gain (dB)		Suggested Use
		BST $[\mathbf{2 : 0]}$	$\mathbf{1 . 2 5} \mathbf{~ G H z}$	$\mathbf{2 . 5} \mathbf{~ G H z}$		
F	F	00	000	0	0	Bypass - Default Setting
		01	000	1.6	3.2	
		01	001	2.1	4.2	
1	1	01	010	2.6	5.0	8" FR4 (6-mil trace) or < 1m (28 AWG) PCle cable
		01	011	3.2	5.9	
		01	100	4.0	7.3	
		01	101	4.9	7.9	
		01	110	5.4	8.5	
		01	111	5.6	9.0	
F=Float (don't drive pin, each float pin has an internal 50K Ohm resistor to VDD and GND), 1=High, 0=Low						

TABLE 2. Equalization Settings with GST=2 for Pins or SMBus Registers

EQ1	EQ0	EQ Setting		EQ Gain (dB)		Suggested Use
		$\begin{aligned} & \hline \text { GST } \\ & {[1: 0]} \end{aligned}$	$\begin{aligned} & \hline \text { BST } \\ & {[2: 0]} \end{aligned}$	1.25 GHz	2.5 GHz	
0	0	10	000	3.8	7.6	14" FR4 (6-mil trace) or 1m (28 AWG) PCle cable
		10	001	5.1	9.9	
F	0	10	010	6.4	11.6	20" FR4 (6-mil trace) or 5m (26 AWG) PCle cable
		10	011	7.6	13.5	
		10	100	9.5	16.1	
F	1	10	101	11.3	17.5	40" FR4 (6-mil trace) or 9m (24 AWG) PCle cable
		10	110	12.3	18.6	
0	1	10	111	12.8	19.8	50" FR4 (6-mil trace) or 10m (24 AWG) PCle cable
F=Float (don't drive pin, each float pin has an internal 50K Ohm resistor to VDD and GND), 1=High, 0=Low						

TABLE 3. Equalization Settings with GST=3 for Pins or SMBus Registers

EQ1	EQ0	EQ Setting		EQ Gain (dB)		Suggested Use
		$\begin{aligned} & \text { GST } \\ & {[1: 0]} \end{aligned}$	$\begin{aligned} & \text { BST } \\ & {[2: 0]} \end{aligned}$	1.25 GHz	2.5 GHz	
		11	000	6.4	12.2	
1	0	11	001	8.5	15.6	30" FR4 (6-mil trace) or 7m (24 AWG) PCle cable
		11	010	10.4	18.3	
0	F	11	011	12.4	21.3	15m (24 AWG) PCle cable
		11	100	15.2	25.0	
1	F	11	101	18.1	27.2	> 15m (24 AWG) PCle cable
		11	110	19.6	28.8	
		11	111	20.2	30.7	
$F=$ Float (don't drive pin, each float pin has an internal 50K Ohm resistor to VDD and GND), 1=High, 0=Low						

The De-Emphasis level must be set when in SMBus
mode. See SMBus TRANSACTIONS section and Table 9
for specific De-Emphasis values.
TABLE 4. De-Emphasis Input Select Pins for A and B ports (3-Level Input)

RATE	DEM1	DEMO	Typical DeEmphasis Level	Typical DE Pulse Width	Typical VOD	Suggested Use
0/F	0	0	0dB	Ops	1000 mV	
0/F	0	1	$-3.5 \mathrm{~dB}$	400ps	1000 mV	8 inches FR4 (6-mil trace) or less than 1 meter (28 AWG) PCle cable
0/F	1	0	-6dB	400ps	1000 mV	
0/F	1	1	-6dB	400ps enhanced	1000 mV	15 inches FR4 (6-mil trace)
0/F	0	F	-9dB	400ps enhanced	1000 mV	
0/F	1	F	-12dB	400ps enhanced	1000 mV	
0/F	F	0	-9dB	400ps enhanced	1200 mV	30 inches FR4 (6-mil trace)
0/F	F	1	-12dB	400ps enhanced	1400 mV	40 inches FR4 (6-mil trace)
0/F	F	F	Reserved, don't use			
1/F	0	0	OdB	Ops	1000 mV	
1/F	0	1	-3.5dB	200ps	1000 mV	
1/F	1	0	-6dB	200ps	1000 mV	
1/F	1	1	-6dB	200ps enhanced	1000 mV	10 inches FR4 (6-mil trace)
1/F	0	F	-9dB	200ps enhanced	1000 mV	
1/F	1	F	-12dB	200ps enhanced	1000 mV	
1/F	F	0	-9dB	200ps enhanced	1200 mV	20 inches FR4 (6-mil trace)
1/F	F	1	-12dB	200ps enhanced	1400 mV	30 inches FR4 (6-mil trace)
1/F	F	F	Reserved, don't use			

F=Float (don't drive pin - (each float pin has an internal 50K Ohm resistor to VDD and GND). Enhanced DE Pulse width provides additional de-emphasis on second bit. VOD = Voltage Output Differential amplitude. When RATE is floated ($\mathrm{F}=$ Auto Rate Detection Active) DE Level and Pulse Width settings follow detected RATE. RATE $=0$ is 2.5 GBps , RATE $=1$ is 5 GBps

TABLE 5. Idle Control (3-Level Input)

\left.| TXIDLEA/B | Function |
| :---: | :---: |
| 0 | This state is for lossy media, dedicated Idle threshold detect circuit disabled, output follows input based |
| on EQ settings. Idle state not guaranteed. | |\(\right\left.] \begin{array}{c}Float enables automatic idle detection. Idle on the input is passed to the output. This is the

recommended default state. Output driven to Idle if diff input signal less than value set by SD_TH pin.\end{array}\right\}\)

TABLE 6. Receiver Electrical Idle Detect Threshold Adjust (Analog input - Connect Resistor to GND or Float)

SD_TH resistor value (Ω) (connect from pin to GND)	Typical Receiver Electrical Idle Detect Threshold (DIFF p-p)
Float (no resistor required)	130 mV (default condition)
0	225 mV
80 K	20 mV
SD_TH resistor value can be set from 0 through 80K Ohms to achieve desired idle detect threshold, see Figure 1. 8K Ohm is	
approx	130 mV.

FIGURE 1. Typical Idle threshold vs SD_TH resistor value

Receiver Detection

The $R x$ detection process is a feature that can set the number of active channels on the DS50PCI402. By sensing the presence of a valid PCle load on the output, the channel can be automatically enabled for operation. This allows the DS50PCI402 to configure inself to the proper lane width, whether it is a 4-lane, 2-lane, or 1-lane PCle link.
Automatic Rx Detection is enabled by a combination of PRSNT\# and ENRXDET inputs. When these inputs are set
low, Automatic Rx Detection is enabled, cycling of the PRSNT\# pin will reset the Rx detection circuitry, initiating a new receiver detection sequence. Pulling the ENRXDET input to logic 1, allows for manual control of the input termination.

The table below summarizes control pin and receiver detect operation for the DS50PCI402.

PRSNT\#	ENRXDET	RXDETA/B	Input Termination	Termination sensed on Output	Function

RX Detect: Range of Operation

The Rx detection process used in the DS50PCI402 is designed to be fully compliant with the PCle 2.0 base specification. The receiver detection circuitry will accurately detect a receiver when both conditions listed below are true:

- DS50PCI402 within Recommended Operating Range for Temperature and Supply Voltage
- For receiver $Z_{R X-D C}=40(\mathrm{~min})$ to $60(\mathrm{max})$ Ohms

Note: To ensure robust system operation, the DS50PCI402 will only signal a valid receiver detection if both halves of the differential output pair detect a proper 40-60 Ohm receiver impedance. If the receiver detection circuitry senses a load impedance greater than $Z_{R X-D C}$ on either trace of a differential pair, it will be interpreted as no termination load present (i.e. the corresponding DS50PCI402 input termination will remain High-Z).

Manual Control Of RXDETA/B In A PCle Environment

In some cases manual control of RXDETA/B may be desirable. In order for upstream and downstream PCle subsystems to communicate in a cabling environment, the PCle specification includes several auxiliary or sideband signals to manage system-level functionality or implementation. Similar methods are used in backplane applications, but the exact
implementation falls outside the PCle standard. Initial communication from the downstream subsystem to the upstream subsystem is done with the CPRSNT\# auxiliary signal. The CPRSNT\# signal is asserted Low by the downstream componentry after the "Power Good" condition has been established. This mechanism allows for the upstream subsystem to determine whether the power is good within the downstream subsystem, enable the reference clock, and initiate the Link Training Sequence.

FIGURE 2. Typical PCle System Timing

The signals shown in the graphic could be easily replicated within the downstream subsystem and used to externally control the common mode input termination impedance on the DS50PCI402. Often an onboard microcontroller will be used to handle events like power-up, power-down, power saving modes, and hot insertion. The microcontroller would use the
same information to determine when to enable and disable the DS50PCI402 input termination. In applications that require SMBus control, the microcontroller could also delay any response to the upstream subsystem to allow sufficient time to correctly program the DS50PCI402 and other devices on the board.

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (VDD)	-0.5 V to +3.0 V
LVCMOS Input/Output Voltage	-0.5V to +4.0 V
CML Input Voltage	-0.5 V to (VDD +0.5 V)
CML Input Current	-30 to +30 mA
LPDS Output Voltage	-0.5 V to (VDD +0.5 V)
Analog (SD_TH)	-0.5V to (VDD+0.5V)
Junction Temperature	$+125^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature Range	
Soldering (4 sec.)	$+260^{\circ} \mathrm{C}$
Maximum Package Power Dissipation at $25^{\circ} \mathrm{C}$	
SQA54A Package	4.21 W
Derate SQA54A Package	$52.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$
ESD Rating	
HBM, STD - JESD22-A114C	$\geq 6 \mathrm{k}$

$$
\begin{array}{lr}
\text { MM, STD - JESD22-A115-A } & \geq 250 \mathrm{~V} \\
\text { CDM, STD - JESD22-C101-C } & \geq 1250 \mathrm{~V}
\end{array}
$$

Thermal Resistance

θ_{JC}	$11.5^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA}, No Airflow, 4 layer JEDEC	$19.1^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

Over recommended operating supply and temperature ranges with default register settings unless other specified.
(Note 2, Note 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
POWER (Note 12)						
PD	Power Dissipation	$\begin{aligned} & \text { EQX=Float, } \mathrm{DEX}=0, \\ & \text { VOD=1Vpp }, \overline{\mathrm{PRSNT}}=0 \end{aligned}$		800	1000	mW
		$\overline{\text { PRSNT }}=1, \mathrm{ENSMB}=0$		4	8	mW
LVCMOS / LVTTL DC SPECIFICATIONS						
V_{IH}	High Level Input Voltage	(Note 14)	2		3.6	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	(Note 14)	0		0.8	V
V_{OH}	High Level Output Voltage	SMBUS open drain V_{OH} set by pullup Resistor				V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.4	V
I_{H}	Input High Current	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, LVCMOS	-15		+15	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{w} /$ FLOAT,PULLDOWN input	-15		+120	
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-15		+15	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, w/FLOAT input	-80		+15	

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CML RECEIVER INPUTS (IN_n+, IN_n-)						
RL ${ }_{\text {RX-DIFF }}$	Rx package plus Si differential return loss	$0.05 \mathrm{GHz}-1.25 \mathrm{GHz}$ (Note 5)		-21		dB
		$1.25 \mathrm{GHz}-2.5 \mathrm{GHz}$ (Note 5)		-20		
$\mathrm{RL}_{\text {RX-CM }}$	Common mode Rx return loss	$0.05 \mathrm{GHz}-2.5 \mathrm{GHz}$ (Note 5)		-11.5		dB
$\mathrm{Z}_{\mathrm{RX} \text { - } \mathrm{DC}}$	Rx DC common mode impedance	Tested at VDD=0	40	50	60	Ω
$\mathrm{Z}_{\text {RX-DIFF-DC }}$	Rx DC differential impedance	Tested at VDD=0	85	100	115	Ω
$\mathrm{V}_{\text {RX-DIFF-DC }}$	Differential Rx peak to peak voltage	Tested at DC, TXIDLEx=0	0.10		1.2	V
$\mathrm{Z}_{\text {RX-HIGH-IMP-DC -POS }}$	DC Input CM impedance for $\mathrm{V}>0$	Vin $=0$ to 200 mV , RXDETA/B = 0, ENSMB $=0, \mathrm{VDD}=2.625$	50			$\mathrm{K} \Omega$
$\mathrm{V}_{\text {RX-IDLE-DET-DIFF-PP }}$	Electrical Idle detect threshold	SD_TH = float, see Table 6, (Note 15)	40		175	$m V_{\text {P-P }}$

LPDS OUTPUTS (OUT_n+, OUT_n-)

$\mathrm{V}_{\text {TX-DIFF-PP }}$	Output Voltage Swing	Differential measurement with OUT_n+ and OUT_n- terminated by 50Ω to GND AC-Coupled, Figure 4, (Note 12)	800	1000	1200	$m V_{\text {P.p }}$
$\mathrm{V}_{\text {OCM }}$	Output Common-Mode Voltage	Single-ended measurement DCCoupled with 50Ω termination, (Note 2)		$V_{D D}-1.4$		v
$\overline{V_{T X-D E-R A T I O-3.5 ~}^{\text {a }}}$	Tx de-emphasis level ratio	$\begin{aligned} & \text { VOD = } 1000 \mathrm{mV}, \text { DEM1 = GND, } \\ & \text { DEM0 = VDD, (Note 2), } \\ & \text { (Note 11) } \end{aligned}$		3.5		dB
$\mathrm{V}_{\text {TX-DE-RATIO-6 }}$	Tx de-emphasis level ratio	$\begin{aligned} & \text { VOD = } 1000 \mathrm{mV} \text {, DEM1 = VDD, } \\ & \text { DEM0 = GND, (Note 2), } \\ & \text { (Note 11) } \end{aligned}$		6		dB
$\mathrm{T}_{\text {TX-HF-DJ-DD }}$	Tx Dj > 1.5 Mhz	(Note 6)			0.15	UI
$\mathrm{T}_{\text {TX-LF-RMS }}$	Tx RMS jitter < 1.5Mhz	(Note 6)			3.0	ps RMS
$\mathrm{T}_{\text {TX-RIIE-FALL }}$	Transmitter Rise/ Fall Time	20% to 80% of differential output voltage, Figure 3 (Note 2, Note 7)	50	67		ps
$\mathrm{T}_{\text {RF-MISMATCH }}$	Tx rise/fall mismatch	20% to 80% of differential output voltage (Note 2, Note 7)		0.01	0.1	UI
$\mathrm{RL}_{\text {TX-DIFF }}$	Differential Output	0.05-1.25 Ghz, See Figure 6		-23		dB
	Return Loss	1.25-2.5 Ghz, See Figure 6		-20		dB
$\mathrm{RL}_{\text {TX-CM }}$	Common Mode Return Loss	0.05-2.5 Ghz, See Figure 6		-11		dB
$\overline{Z_{\text {TX-DIFF-DC }}}$	DC differential Tx impedance			100		Ω
$\mathrm{V}_{\text {TX-CM-AC-PP }}$	Tx AC common mode voltage				100	mVpp
$\mathrm{I}_{\text {TX-SHORT }}$	transmitter short circuit current limit	Total current transmitter can supply when shorted to VDD or GND			90	mA
$\mathrm{V}_{\text {TX-CM-DC-ACTIVE-IDLE }}$ delta	Absolute Delta of DC Common Mode Voltage during LO and electrical Idle				40	mV

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {TX-CM-DC- LIIE-DELTA }}$	Absolute Delta of DC Common Mode Voltage between Tx+ and Tx-				25	mV
$\mathrm{T}_{\text {TX-IDLE-SET-TO -IDLE }}$	Max time to transition to valid diff signaling after leaving Electrical Idle	$\mathrm{VIN}=800 \mathrm{mVp}-\mathrm{p}, 5 \mathrm{Gbps}$, Figure 5		6.5	9.5	nS
$\mathrm{T}_{\text {TX-IDLE-TO -DIFF-DATA }}$	Max time to transition to valid diff signaling after leaving Electrical Idle	$\mathrm{VIN}=800 \mathrm{mVp}-\mathrm{p}, 5 \mathrm{Gbps}$, Figure 5		5.5	8	nS
$\mathrm{T}_{\text {PDEQ }}$	Differential Propagation Delay	$\begin{aligned} & \mathrm{EQ}=11, \\ & +4.0 \mathrm{~dB} @ 2.5 \mathrm{GHz} \text {, Figure } 4 \\ & (\text { Note 9) } \end{aligned}$	150	200	250	ps
$\mathrm{T}_{\text {PD }}$	Differential Propagation Delay	$\mathrm{EQ}=\mathrm{FF},$ Equalizer Bypass, Figure 4 (Note 9, Note 8)	120	170	220	ps
$\mathrm{T}_{\text {LSK }}$	Lane to Lane Skew in a Single Part	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25 \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ & \text { (Note 7, Note 8) } \\ & \hline \end{aligned}$			27	ps
$\mathrm{T}_{\text {PPSK }}$	Part to Part Propagation Delay Skew	$\mathrm{T}_{\mathrm{A}}=25 \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$			35	ps
EQUALIZATION						
DJE1	Residual Deterministic Jitter at 5 Gbps	42" of 5 mil stripline FR4, EQ1,0=F,1; K28.5 pattern, DEMx=0, Tx Launch Amplitude 1.0 Vp-p, SD_TH=F. (Note 2, Note 10)		0.02	0.09	$\mathrm{Ul}_{\mathrm{P}-\mathrm{P}}$
DJE2	Residual Deterministic Jitter at 2.5 Gbps	42" of 5 mil stripline FR4, EQ1,0=F,1; K28.5 pattern, DEMx=0, Tx Launch Amplitude 1.0 Vp-p, SD_TH=F. (Note 2, Note 10)		0.02	0.04	Ul $\mathrm{P}_{\mathrm{P} \text { - }}$
DJE3	Residual Deterministic Jitter at 5 Gbps	7 meters of 24 AWG PCle cable, EQ1,0=1,0; K28.5 pattern, DEMx=0, Tx Launch Amplitude 1.0 Vp-p, SD_TH=F. (Note 2, Note 10)		0.02	0.11	Ul $\mathrm{P}_{\mathrm{P} \text { P }}$
DJE4	Residual Deterministic Jitter at 2.5 Gbps	7 meters of 24 AWG PCle cable, EQ1,0=1,0; K28.5 pattern, DEMx=0, Tx Launch Amplitude 1.0 Vp-p, SD_TH=F. (Note 2, Note 10)		0.03	0.07	$\mathrm{Ul}_{\mathrm{P}-\mathrm{P}}$
RJ	Random Jitter	Tx Launch Amplitude 1.0 Vp -p, SD_TH=F, Repeating 1100b (D24.3) pattern. (Note 2)		<0.5		psrms

Symbol	Parameter	Conditions	Min	Typ	Max	Units
DE-EMPHASIS						
DJD1	Residual Deterministic Jitter at 5 Gbps	28" of 5 mil stripline FR4, EQ1,0=F,F; K28.5 pattern, DEM1,0=F,1; Tx Launch Amplitude $1.0 \mathrm{Vp}-\mathrm{p}, \mathrm{SD}_{-} \mathrm{TH}=\mathrm{F}$. (Note 2, Note 10)		0.02	0.09	$U l_{\text {P-P }}$
DJD2	Residual Deterministic Jitter at 2.5 Gbps	28" of 5 mil microstrip FR4, EQ1,0=F,F; K28.5 pattern, DEM1,0=F,0; Tx Launch Amplitude $1.0 \mathrm{Vp}-\mathrm{p}$, SD_TH=F. $^{\text {I }}$ (Note 2, Note 10)		0.03	0.05	Ul $\mathrm{P}_{\text {-P }}$
DJD3	Residual Deterministic Jitter at 5 Gbps	7 meters of 24 AWG PCle cable, EQ1,0=F,F; K28.5 pattern, DEM1,0=F,1; Tx Launch Amplitude $1.0 \mathrm{Vp}-\mathrm{p}, \mathrm{SD}_{-} \mathrm{TH}=\mathrm{F}$. (Note 2, Note 10)		0.03	0.13	Ul $\mathrm{P}_{\text {P-P }}$
DJD4	Residual Deterministic Jitter at 2.5 Gbps	7 meters of 24 AWG PCle cable, EQ1,0=F,F; K28.5 pattern, DEM1,0=F,0; Tx Launch Amplitude $1.0 \mathrm{Vp}-\mathrm{p}$, SD_TH=F. $^{\text {I }}$ (Note 2, Note 10)		0.04	0.06	Ul $\mathrm{P}_{\text {P- }}$

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. Absolute Maximum Numbers are guaranteed for a junction temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Models are validated to Maximum Operating Voltages only.
Note 2: Typical values represent most likely parametric norms at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$., and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.
Note 3: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.
Note 4: Allowed supply noise ($\mathrm{m} \mathrm{V}_{\text {P-p }}$ sine wave) under typical conditions.
Note 5: Input Return Loss also uses the setup shown in Figure 6. The blocking / biasing circuit is replaced with a simple AC coupling capacitor for each input to emulate a typical PCle application.
Note 6: PCle 2.0 transmit jitter specifications - actual device jitter is much less. Actual device Rj and Dj has been characterized and specified with test loads outlined in the EQUALIZATION and DE-EMPHASIS sections of the Electrical Characteristics table.
Note 7: Guaranteed by device characterization
Note 8: Propagation Delay measurements for Part to Part skew are all based on devices operating under indentical temperature and supply voltage conditions.
Note 9: Propagation Delay measurements will change slightly based on the level of EQ selected. EQ Bypass will result in the shortest propagation delays.
Note 10: Residual DJ measurements subtract out deterministic jitter present at the generator outputs. For 2.5 Gbps generator $\mathrm{Dj}=0.0275 \mathrm{UI}$ and for 5.0 Gbps generator $\mathrm{Dj}=0.035 \mathrm{UI}$.
Note 11: Measured with a repeating K28.5 pattern at a data rate of 2.5 Gbps and 5.0 Gbps.
Note 12: Measured with DEM Select pins configured for 1000 mV VOD, see De-emphasis table.
Note 13: Measured at default SD_TH settings
Note 14: Input edge rate for LVCMOS/FLOAT inputs must be 50 ns minimum from 10-90\%.
Note 15: Measured at package pins of receiver. Less than 40 mV is IDLE, greater than 175 mV is ACTIVE. SD_TH pin connected with resistor to GND overrides this default setting.

Electrical Characteristics - Serial Management Bus Interface

Over recommended operating supply and temperature ranges unless other specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
SERIAL BUS INTERFACE DC SPECIFICATIONS						
$\mathrm{V}_{\text {IL }}$	Data, Clock Input Low Voltage				0.8	V
V_{IH}	Data, Clock Input High Voltage		2.1		3.6	V
$\mathrm{I}_{\text {PULLUP }}$	Current Through Pull-Up Resistor or Current Source	High Power Specification	4			mA
$\mathrm{V}_{\text {D }}$	Nominal Bus Voltage		2.375		3.6	V
$\mathrm{I}_{\text {LEAK-Bus }}$	Input Leakage Per Bus Segment	(Note 16)	-200		+200	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LEAK-Pin }}$	Input Leakage Per Device Pin			-15		$\mu \mathrm{A}$
C_{1}	Capacitance for SDA and SCL	(Note 16, Note 17)			10	pF
$\mathrm{R}_{\text {TERM }}$	External Termination Resistance pull to $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%$ OR $3.3 \mathrm{~V} \pm$ 10\%	Pullup $V_{D D}=3.3 \mathrm{~V}$, (Note 16, Note 17, Note 18)		2000		Ω
		Pullup $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$, (Note 16, Note 17, Note 18)		1000		Ω

SERIAL BUS INTERFACE TIMING SPECIFICATIONS. See Figure 7

FSMB	Bus Operating Frequency	(Note 19)	10	100	kHz
TBUF	Bus Free Time Between Stop and Start Condition		4.7		$\mu \mathrm{s}$
THD:STA	Hold time after (Repeated) Start Condition. After this period, the first clock is generated.	At $\mathrm{I}_{\text {PULLUP }}, \mathrm{Max}$	4.0		$\mu \mathrm{s}$
TSU:STA	Repeated Start Condition Setup Time		4.7		$\mu \mathrm{s}$
TSU:STO	Stop Condition Setup Time		4.0		$\mu \mathrm{s}$
THD:DAT	Data Hold Time		300		ns
TSU:DAT	Data Setup Time		250		ns
T TIMEOUT	Detect Clock Low Timeout	(Note 19)	25	35	ms
$\mathrm{T}_{\text {LOW }}$	Clock Low Period		4.7		$\mu \mathrm{s}$
$\mathrm{T}_{\text {HIGH }}$	Clock High Period	(Note 19)	4.0	50	$\mu \mathrm{s}$
T LOW:SEXT	Cumulative Clock Low Extend Time (Slave Device)	(Note 19)		2	ms
t_{F}	Clock/Data Fall Time	(Note 19)		300	ns
t_{R}	Clock/Data Rise Time	(Note 19)		1000	ns
$\mathrm{t}_{\text {POR }}$	Time in which a device must be operational after power-on reset	(Note 19)		500	ms

Note 16: Recommended value. Parameter not tested in production.
Note 17: Recommended maximum capacitance load per bus segment is 400 pF .
Note 18: Maximum termination voltage should be identical to the device supply voltage.
Note 19: Compliant to SMBus 2.0 physical layer specification. See System Management Bus (SMBus) Specification Version 2.0, section 3.1.1 SMBus common AC specifications for details.

FIGURE 3. CML Output Transition Times

FIGURE 4. Propagation Delay Timing Diagram

FIGURE 5. IdIe Timing Diagram

System Management Bus (SMBus) and Configuration Registers

The System Management Bus interface is compatible to SMBus 2.0 physical layer specification. ENSMB must be pulled high to enable SMBus mode and allow access to the configuration registers.
The DS50PCI402 has the AD[3:0] inputs in SMBus mode. These pins are the user set SMBus slave address inputs. The $A D[3: 0]$ pins have internal pull-down. When left floating or pulled low the $A D[3: 0]=0000$ 'b, the device default address byte is AO'h. Based on the SMBus 2.0 specification, the DS50PCI402 has a 7-bit slave address of 1010000'b. The LSB is set to 0 'b (for a WRITE), thus the 8 -bit value is 1010 0000 'b or A0'h. The device address byte can be set with the use of the $A D[3: 0]$ inputs. Below are some examples.
$A D[3: 0]=0001$ ' b , the device address byte is A2'h
$\mathrm{AD}[3: 0]=0010 \mathrm{~b}$, the device address byte is A4'h
$\mathrm{AD}[3: 0]=0100^{\prime} \mathrm{b}$, the device address byte is $\mathrm{A} 8^{\prime} \mathrm{h}$
$A D[3: 0]=1000 ' b$, the device address byte is B0'h
The SDA, SCL pins are 3.3V tolerant, but are not 5V tolerant. External pull-up resistor is required on the SDA. The resistor value can be from $1 \mathrm{k} \Omega$ to $5 \mathrm{k} \Omega$ depending on the voltage, loading and speed. The SCL may also require an external pull-up resistor and it depends on the Host that drives the bus.

TRANSFER OF DATA VIA THE SMBus

During normal operation the data on SDA must be stable during the time when SCL is High.
There are three unique states for the SMBus:
START: A High-to-Low transition on SDA while SCL is High indicates a message START condition.
STOP: A Low-to-High transition on SDA while SCL is High indicates a message STOP condition.
IDLE: If SCL and SDA are both High for a time exceeding $t_{\text {BUF }}$ from the last detected STOP condition or if they are High for a total exceeding the maximum specification for $\mathrm{t}_{\text {HIGH }}$ then the bus will transfer to the IDLE state.

SMBus TRANSACTIONS

The device supports WRITE and READ transactions. See Register Description table for register address, type (Read/ Write, Read Only), default value and function information.
When SMBus is enabled, the DS50PCI402 must use one of the following De-emphasis settings (Table 8). The driver de-emphasis value is set on a per channel basis using 8 different registers. Each register ($0 \times 11,0 \times 18,0 \times 1 F, 0 \times 26,0 \times 2 \mathrm{E}$, $0 \times 35,0 \times 3 \mathrm{C}, 0 \times 43$) requires one of the following De-emphasis settings when in SMBus mode. See Table 4 for suggested DE settings at 2.5 and 5.0 Gbps operation.

TABLE 8. De-Emphasis Register Settings (must write one of the following when in SMBus mode)

De-Emphasis Value	Register Setting
0.0 dB	0×01
-3.5 dB	$0 \times E 8$
-6 dB	0×88
-9 dB	0×90
-12 dB	$0 \times \mathrm{A0}$

WRITING A REGISTER

To write a register, the following protocol is used (see SMBus 2.0 specification).

1. The Host drives a START condition, the 7-bit SMBus address, and a "0" indicating a WRITE.
2. The Device (Slave) drives the ACK bit ("0").
3. The Host drives the 8-bit Register Address.
4. The Device drives an ACK bit ("0").
5. The Host drive the 8 -bit data byte.
6. The Device drives an ACK bit ("0").
7. The Host drives a STOP condition.

The WRITE transaction is completed, the bus goes IDLE and communication with other SMBus devices may now occur.

READING A REGISTER

To read a register, the following protocol is used (see SMBus 2.0 specification).

1. The Host drives a START condition, the 7-bit SMBus address, and a " 0 " indicating a WRITE.
2. The Device (Slave) drives the ACK bit ("0").
3. The Host drives the 8-bit Register Address.
4. The Device drives an ACK bit ("0").
5. The Host drives a START condition.
6. The Host drives the 7 -bit SMBus Address, and a "1" indicating a READ.
7. The Device drives an ACK bit " 0 ".
8. The Device drives the 8-bit data value (register contents).
9. The Host drives a NACK bit " 1 "indicating end of the READ transfer.
10. The Host drives a STOP condition.

The READ transaction is completed, the bus goes IDLE and communication with other SMBus devices may now occur.
Please see SMBus Register Map Table for more information.

SMBus REGISTER WRITES:

The DS50PCI402 outputs will NOT be PCle compliant with the SMBus registers enabled (ENSMB = 1) until the VOD levels have been set. Below is an example to configure the VOD level to a PCle compliant amplitude and adjust the DE and EQ signal conditioning to work with a 7 m PCle cable interconnect on the input B-side / output A-side of the device

1. Reset the SMBus registers to default values: Write 01'h to address 0×00.
2. Set VOD $=1.0 \mathrm{~V}$ for all channels ($\mathrm{OA}[3: 0]$ and $\mathrm{OB}[3: 0]$): Write $0 F$ 'h to address $0 \times 10,0 \times 17,0 \times 1 \mathrm{E}, 0 \times 25,0 \times 2 \mathrm{D}$, $0 \times 34,0 \times 3 B, 0 \times 42$.
3. Set equalization to external pin level $\mathrm{EQ}[1: 0]=10(\sim 15.5$ dB at 2.5 GHz) for all channels (IB[3:0]):
Write $39^{\prime} \mathrm{h}$ to address $0 \times 0 \mathrm{~F}, 0 \times 16,0 \times 1 \mathrm{D}, 0 \times 24$.
4. Set de-emphasis to $D E[1: 0]=F 1$ or -12 dB enhanced for all A channels (OA[3:0]):
Write AO'h to address $0 \times 2 \mathrm{E}, 0 \times 35,0 \times 3 \mathrm{C}, 0 \times 43$.

IDLE AND RATE DETECTION TO EXTERNAL PINS
The functions of IDLE and RATE detection to external pins for monitoring can be supported in SMBus mode. The external GPIO pins of $19,20,46$ and 47 will be changed and they will serve as outputs for IDLE and RATE detect signals.
The following external pins should be set to auto detection:
RATE $=F(F L O A T)-$ auto RATE detect enabled TXIDLEA/B = F (FLOAT) - auto IDLE detect enabled There are 4 GPIO pins that can be configured as outputs with reg_4E[0].
To disable the external SMBus address pins, so pin 46 and 47 can be used as outputs:

Write 01'h to address 0x4E.
Care must be taken to ensure that only the desired status block is enabled and attached to the external pin as the status blocks can be OR'ed together internally. Register bits reg_47 [5:4] and bits reg_4C[7:6] are used to enable each of the status block outputs to the external pins. The channel status blocks can be internally OR'ed together to monitor more than one channel at a time. This allows more information to be presented on the status outputs and later if desired, a diagnosis of the channel identity can be made with additional SMBus writes to register bits reg_47[5:4] and bits reg_4C [7:6].
Below are examples to configure the device and bring the internal IDLE and RATE status to pins 19, 20, 46, 47.

To monitor the IDLE detect with two channels ORed (CH0 with $\mathrm{CH} 2, \mathrm{CH} 1$ with $\mathrm{CH} 3, \mathrm{CH} 4$ with $\mathrm{CH} 6, \mathrm{CH} 5$ with CH 7):

Write 32'h to address 0x47.
The following IDLE status should be observable on the external pins:
pin $19-\mathrm{CHO}$ with CH 2 ,
pin $20-\mathrm{CH} 1$ with CH 3 ,
pin $46-\mathrm{CH} 4$ with CH 6 ,
pin $47-\mathrm{CH} 5$ with CH 7 .
Pin $=$ HIGH (VDD) means IDLE is detected (no signal present).
Pin = LOW (GND) means ACTIVE (data signal present).
To monitor the RATE detect with two channels ORed (CHO with $\mathrm{CH} 2, \mathrm{CH} 1$ with $\mathrm{CH} 3, \mathrm{CH} 4$ with $\mathrm{CH} 6, \mathrm{CH} 5$ with CH 7):

Write CO'h to address $0 \times 4 \mathrm{C}$.
The following RATE status should be observable on the external pins:
pin 19 - CH 0 with CH 2 ,
pin $20-\mathrm{CH} 1$ with CH 3 ,
pin $46-\mathrm{CH} 4$ with CH 6 ,
pin 47 - CH5 with CH7.
Pin $=$ HIGH (VDD) means high data rate is detected (6 Gbps).
Pin = LOW (GND) means low rate is detected (3 Gbps).

TABLE 9. SMBus Register Map						
Address	Register Name	Bit (s)	Field	Type	Defaul t	Description
0x00	Reset	7:1	Reserved	R/W	0x00	Set bits to 0.
		0	Reset			SMBus Reset 1: Reset registers to default value
0x01	PWDN Channels	7:0	PWDN CHx	R/W	0x00	Power Down per Channel [7]: CHA_3 [6]: CHA_2 [5]: CHA_1 [4]: CHA_O [3]: CHB_3 [2]: CHB_2 [1]: CHB_1 [0]: CHB_0 00'h = all channels enabled FF'h = all channels disabled
0x02	PWDN Control	7:1	Reserved	R/W	0x00	Set bits to 0 .
		0	Override PWDN			0: Allow PWDN pin control 1: Block PWDN pin control
0x08	Pin Control Override	7:5	Reserved	R/W	0x00	Set bits to 0 .
		4	Override IDLE			0: Allow IDLE pin control 1: Block IDLE pin control
		3	Reserved			Set bit to 0 .
		2	Override RATE			0: Allow RATE pin control 1: Block RATE pin control
		1:0	Reserved			Set bits to 0 .

0x0E	$\begin{aligned} & \text { CHO - CHBO } \\ & \text { IDLE RATE Select } \end{aligned}$	7:6	Reserved	R/W	0x00	Set bits to 0 .
		5	IDLE auto			0: Allow IDLE_sel control in Bit 4 1: Automatic IDLE detect
		4	IDLE select			0 : Output is ON (SD is disabled) 1: Output is muted (electrical idle)
		3:2	Reserved			Set bits to 0 .
		1	RATE auto			0: Allow RATE_sel control in Bit 0 1: Automatic RATE detect
		0	RATE select			$\begin{aligned} & \hline \text { 0: } 2.5 \mathrm{Gbps} \\ & \text { 1: } 5.0 \mathrm{Gbps} \\ & \hline \end{aligned}$
0x0F	$\mathrm{CHO}-\mathrm{CHBO}$ EQ Control	7:6	Reserved	R/W	0x20	Set bits to 0 .
		5:0	CHO IBO EQ			IB0 EQ Control - total of 24 levels (3 gain stages with 8 settings) [5]: Enable EQ [4:3]: Gain Stage Control [2:0]: Boost Level Control Pin [EQ1 EQ0] = Register [EN] [GST] [BST] = Hex Value $\begin{aligned} & \mathrm{FF}=100000=20^{\prime} \mathrm{h}=\text { Bypass }(\text { Default }) \\ & 11=101010=2 A^{\prime} \mathrm{h} \\ & 00=110000=30^{\prime} \mathrm{h} \\ & \mathrm{FO}=110010=32^{\prime} \mathrm{h} \\ & 10=111001=39^{\prime} \mathrm{h} \\ & \mathrm{~F} 1=110101=35^{\prime} \mathrm{h} \\ & 01=110111=37^{\prime} \mathrm{h} \\ & O F=111011=3 B^{\prime} \mathrm{h} \\ & 1 \mathrm{~F}=111101=3 D^{\prime} \mathrm{h} \end{aligned}$
0x10	CHO - CHBO VOD Control	7	Reserved	R/W	0x03	Set bit to 0.
		5:0	CH0 OBO VOD			$\begin{aligned} & \text { OBO VOD Control } \\ & \text { O3'h }=600 \mathrm{mV} \text { (Default) } \\ & 07 \mathrm{~h}=800 \mathrm{mV} \\ & 0 \mathrm{~F}^{\prime} \mathrm{h}=1000 \mathrm{mV} \\ & 1 \mathrm{~F}^{\prime} \mathrm{h}=1200 \mathrm{mV} \end{aligned}$
0x11	$\begin{array}{\|l\|} \hline \text { CHO - CHBO } \\ \text { DE Control } \end{array}$	7:0	CHO OBO DEM	R/W	0x03	OBO DEM Control [7]: DEM TYPE (Compatibility $=0 /$ Enhanced $=1$) [6:0]: DEM Level Control Pin [DEM1 DEM0] = Register [TYPE] [Level Control] = Hex Value $\begin{aligned} & 00=00000001=01^{\prime} \mathrm{h}=0.0 \mathrm{~dB} \\ & 01=11101000=E 8^{\prime} \mathrm{h}=-3.5 \mathrm{~dB} \\ & 11=10001000=88^{\prime} \mathrm{h}=-6.0 \mathrm{~dB} \\ & 0 \mathrm{~F}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & 1 \mathrm{~F}=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FO}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & \mathrm{~F} 1=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FF}=11000000=\mathrm{C} 0^{\prime} \mathrm{h}=\text { Reserved } \end{aligned}$
0x12	$\begin{aligned} & \hline \text { CHO - CHBO } \\ & \text { IDLE Threshold } \end{aligned}$	7:4	Reserved	R/W	0x00	Set bits to 0.
		3:0	IDLE threshold			$\begin{aligned} & \text { De-assert = [3:2], assert = [1:0] } \\ & 00=110 \mathrm{mV}, 70 \mathrm{mV} \text { (Default) } \\ & 01=150 \mathrm{mV}, 110 \mathrm{mV} \\ & 10=170 \mathrm{mV}, 130 \mathrm{mV} \\ & 11=190 \mathrm{mV}, 150 \mathrm{mV} \end{aligned}$

0x15	CH1-CHB1 IDLE RATE Select	7:6	Reserved	R/W	0x00	Set bits to 0.
		5	IDLE auto			0: Allow IDLE_sel control in Bit 4 1: Automatic IDLE detect
		4	IDLE select			0 : Output is ON (SD is disabled) 1: Output is muted (electrical idle)
		3:2	Reserved			Set bits to 0 .
		1	RATE auto			0: Allow RATE_sel control in Bit 0 1: Automatic RATE detect
		0	RATE select			0: 2.5 Gbps 1: 5.0 Gbps
0x16	CH1-CHB1 EQ Control	7:6	Reserved	R/W	0x20	Set bits to 0 .
		5:0	CH1 IB1 EQ			IB1 EQ Control - total of 24 levels (3 gain stages with 8 settings) [5]: Enable EQ [4:3]: Gain Stage Control [2:0]: Boost Level Control Pin [EQ1 EQ0] = Register [EN] [GST] [BST] = Hex Value $\begin{aligned} & \mathrm{FF}=100000=20^{\prime} \mathrm{h}=\text { Bypass (Default) } \\ & 11=101010=2 A^{\prime} \mathrm{h} \\ & 00=110000=30^{\prime} \mathrm{h} \\ & \mathrm{~F}=110010=32^{\prime} \mathrm{h} \\ & 10=111001=39^{\prime} \mathrm{h} \\ & \mathrm{~F} 1=110101=35^{\prime} \mathrm{h} \\ & 01=110111=37^{\prime} \mathrm{h} \\ & \mathrm{OF}=111011=3 B^{\prime} \mathrm{h} \\ & 1 \mathrm{~F}=111101=3 D^{\prime} \mathrm{h} \end{aligned}$
0x17	CH1-CHB1 VOD Control	7	Reserved	R/W	0x03	Set bit to 0 .
		5:0	CH1 OB1 VOD			OB1 VOD Control $\begin{aligned} & 03^{\prime} \mathrm{h}=600 \mathrm{mV} \text { (Default) } \\ & 07 \mathrm{~h}=800 \mathrm{mV} \\ & 0 \mathrm{~F} \mathrm{~h}=1000 \mathrm{mV} \\ & 1 \mathrm{~F} \mathrm{~h}=1200 \mathrm{mV} \end{aligned}$
0x18	CH1-CHB1 DE Control	7:0	CH1 OB1 DEM	R/W	0×03	OB1 DEM Control [7]: DEM TYPE (Compatibility = $0 /$ Enhanced = 1) [6:0]: DEM Level Control Pin [DEM1 DEM0] = Register [TYPE] [Level Control] = Hex Value $\begin{aligned} & 00=00000001=01^{\prime} \mathrm{h}=0.0 \mathrm{~dB} \\ & 01=11101000=E 8^{\prime} \mathrm{h}=-3.5 \mathrm{~dB} \\ & 11=10001000=88^{\prime} \mathrm{h}=-6.0 \mathrm{~dB} \\ & 0 \mathrm{~F}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & 1 \mathrm{~F}=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FO}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & \mathrm{~F} 1=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FF}=11000000=\mathrm{C} 0^{\prime} \mathrm{h}=\text { Reserved } \end{aligned}$
0x19	CH1-CHB1 IDLE Threshold	7:4	Reserved	R/W	0×00	Set bits to 0 .
		3:0	IDLE threshold			$\begin{aligned} & \text { De-assert }=[3: 2], \text { assert }=[1: 0] \\ & 00=110 \mathrm{mV}, 70 \mathrm{mV} \text { (Default }) \\ & 01=150 \mathrm{mV}, 110 \mathrm{mV} \\ & 10=170 \mathrm{mV}, 130 \mathrm{mV} \\ & 11=190 \mathrm{mV}, 150 \mathrm{mV} \end{aligned}$

0x1C	$\begin{aligned} & \hline \mathrm{CH} 2-\mathrm{CHB} 2 \\ & \text { IDLE RATE Select } \end{aligned}$	7:6	Reserved	R/W	0x00	Set bits to 0.
		5	IDLE auto			0: Allow IDLE_sel control in Bit 4 1: Automatic IDLE detect
		4	IDLE select			0 : Output is ON (SD is disabled) 1: Output is muted (electrical idle)
		3:2	Reserved			Set bits to 0.
		1	RATE auto			0: Allow RATE_sel control in Bit 0 1: Automatic RATE detect
		0	RATE select			0: 2.5 Gbps 1: 5.0 Gbps
0x1D	$\mathrm{CH} 2-\mathrm{CHB} 2$ EQ Control	7:6	Reserved	R/W	0x20	Set bits to 0 .
		5:0	CH2 IB2 EQ			IB2 EQ Control - total of 24 levels (3 gain stages with 8 settings) [5]: Enable EQ [4:3]: Gain Stage Control [2:0]: Boost Level Control Pin [EQ1 EQ0] = Register [EN] [GST] [BST] = Hex Value $\begin{aligned} & F F=100000=20^{\prime} \mathrm{h}=\text { Bypass (Default) } \\ & 11=101010=2 A^{\prime} \mathrm{h} \\ & 00=110000=30^{\prime} ' \mathrm{~h} \\ & \mathrm{~F}=110010=32^{\prime} \mathrm{h} \\ & 10=111001=39^{\prime} \mathrm{h} \\ & \mathrm{~F} 1=110101=35^{\prime} \mathrm{h} \\ & 01=110111=37 ' \mathrm{~h} \\ & 0 \mathrm{~F}=111011=3 B^{\prime} \mathrm{h} \\ & 1 \mathrm{~F}=111101=3 D^{\prime} \mathrm{h} \end{aligned}$
0x1E	CH2 - CHB2 VOD Control	7	Reserved	R/W	0×03	Set bit to 0.
		5:0	CH2 OB2 VOD			$\begin{array}{\|l} \hline \text { OB2 VOD Control } \\ \text { O3'h }=600 \mathrm{mV} \text { (Default) } \\ 07 \mathrm{~h}=800 \mathrm{mV} \\ \text { OF'h }=1000 \mathrm{mV} \\ \text { 1F'h }=1200 \mathrm{mV} \end{array}$
0x1F	CH2 - CHB2 DE Control	7:0	CH2 OB2 DEM	R/W	0x03	OB2 DEM Control [7]: DEM TYPE (Compatibility = $0 /$ Enhanced $=1$) [6:0]: DEM Level Control Pin [DEM1 DEM0] = Register [TYPE] [Level Control] = Hex Value $\begin{aligned} & 00=00000001=01^{\prime} \mathrm{h}=0.0 \mathrm{~dB} \\ & 01=11101000=E 8^{\prime} \mathrm{h}=-3.5 \mathrm{~dB} \\ & 11=10001000=88^{\prime} \mathrm{h}=-6.0 \mathrm{~dB} \\ & 0 \mathrm{~F}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & 1 \mathrm{~F}=10100000=\mathrm{A} 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{~F} 0=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & \mathrm{~F} 1=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FF}=11000000=\mathrm{C} 0^{\prime} \mathrm{h}=\text { Reserved } \end{aligned}$
0x20	$\begin{aligned} & \hline \text { CH2 - CHB2 } \\ & \text { IDLE Threshold } \end{aligned}$	7:4	Reserved	R/W	0x00	Set bits to 0.
		3:0	IDLE threshold			$\begin{aligned} & \text { De-assert = [3:2], assert }=[1: 0] \\ & 00=110 \mathrm{mV}, 70 \mathrm{mV} \text { (Default) } \\ & 01=150 \mathrm{mV}, 110 \mathrm{mV} \\ & 10=170 \mathrm{mV}, 130 \mathrm{mV} \\ & 11=190 \mathrm{mV}, 150 \mathrm{mV} \end{aligned}$

0×23	CH3-CHB3 IDLE RATE Select	7:6	Reserved	R/W	0x00	Set bits to 0.
		5	IDLE auto			0: Allow IDLE_sel control in Bit 4 1: Automatic IDLE detect
		4	IDLE select			0 : Output is ON (SD is disabled) 1: Output is muted (electrical idle)
		3:2	Reserved			Set bits to 0 .
		1	RATE auto			0: Allow RATE_sel control in Bit 0 1: Automatic RATE detect
		0	RATE select			0: 2.5 Gbps 1: 5.0 Gbps
0x24	CH3-CHB3 EQ Control	7:6	Reserved	R/W	0x20	Set bits to 0 .
		5:0	CH3 IB3 EQ			IB3 EQ Control - total of 24 levels (3 gain stages with 8 settings) [5]: Enable EQ [4:3]: Gain Stage Control [2:0]: Boost Level Control Pin [EQ1 EQ0] = Register [EN] [GST] [BST] = Hex Value $\begin{aligned} & \mathrm{FF}=100000=20^{\prime} \mathrm{h}=\text { Bypass (Default) } \\ & 11=101010=2 A^{\prime} \mathrm{h} \\ & 00=110000=30^{\prime} \mathrm{h} \\ & \mathrm{~F}=110010=32^{\prime} \mathrm{h} \\ & 10=111001=39^{\prime} \mathrm{h} \\ & \mathrm{~F} 1=110101=35^{\prime} \mathrm{h} \\ & 01=110111=37^{\prime} \mathrm{h} \\ & \mathrm{OF}=111011=3 B^{\prime} \mathrm{h} \\ & 1 \mathrm{~F}=111101=3 D^{\prime} \mathrm{h} \end{aligned}$
0x25	CH3-CHB3 VOD Control	7	Reserved	R/W	0x03	Set bit to 0 .
		5:0	CH3 OB3 VOD			OB3 VOD Control $\begin{aligned} & 03^{\prime} \mathrm{h}=600 \mathrm{mV} \text { (Default) } \\ & 07 \mathrm{~h}=800 \mathrm{mV} \\ & 0 \mathrm{~F} \mathrm{~h}=1000 \mathrm{mV} \\ & 1 \mathrm{~F} \mathrm{~h}=1200 \mathrm{mV} \end{aligned}$
0x26	CH3-CHB3 DE Control	7:0	CH3 OB3 DEM	R/W	0×03	OB3 DEM Control [7]: DEM TYPE (Compatibility = $0 /$ Enhanced = 1) [6:0]: DEM Level Control Pin [DEM1 DEM0] = Register [TYPE] [Level Control] = Hex Value $\begin{aligned} & 00=00000001=01^{\prime} \mathrm{h}=0.0 \mathrm{~dB} \\ & 01=11101000=E 8^{\prime} \mathrm{h}=-3.5 \mathrm{~dB} \\ & 11=10001000=88^{\prime} \mathrm{h}=-6.0 \mathrm{~dB} \\ & 0 \mathrm{~F}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & 1 \mathrm{~F}=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FO}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & \mathrm{~F} 1=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FF}=11000000=\mathrm{C} 0^{\prime} \mathrm{h}=\text { Reserved } \end{aligned}$
0x27	CH3-CHB3 IDLE Threshold	7:4	Reserved	R/W	0×00	Set bits to 0 .
		3:0	IDLE threshold			$\begin{aligned} & \text { De-assert }=[3: 2], \text { assert }=[1: 0] \\ & 00=110 \mathrm{mV}, 70 \mathrm{mV} \text { (Default }) \\ & 01=150 \mathrm{mV}, 110 \mathrm{mV} \\ & 10=170 \mathrm{mV}, 130 \mathrm{mV} \\ & 11=190 \mathrm{mV}, 150 \mathrm{mV} \end{aligned}$

0x2B	$\mathrm{CH} 4-\mathrm{CHAO}$ IDLE RATE Select	7:6	Reserved	R/W	0x00	Set bits to 0.
		5	IDLE auto			0: Allow IDLE_sel control in Bit 4 1: Automatic IDLE detect
		4	IDLE select			0 : Output is ON (SD is disabled) 1: Output is muted (electrical idle)
		3:2	Reserved			Set bits to 0 .
		1	RATE auto			0 : Allow RATE_sel control in Bit 0 1: Automatic RATE detect
		0	RATE select			$\begin{aligned} & \text { 0: } 2.5 \mathrm{Gbps} \\ & \text { 1: } 5.0 \mathrm{Gbps} \end{aligned}$
0x2C	$\mathrm{CH} 4-\mathrm{CHAO}$ EQ Control	7:6	Reserved	R/W	0x20	Set bits to 0 .
		5:0	CH4 IAO EQ			IAO EQ Control - total of 24 levels (3 gain stages with 8 settings) [5]: Enable EQ [4:3]: Gain Stage Control [2:0]: Boost Level Control Pin [EQ1 EQ0] = Register [EN] [GST] [BST] = Hex Value $\begin{aligned} & F F=100000=20^{\prime} h=\text { Bypass (Default) } \\ & 11=101010=2 A^{\prime} h \\ & 00=110000=30^{\prime} h \\ & F 0=110010=32^{\prime} h \\ & 10=111001=39^{\prime} \mathrm{h} \\ & F 1=110101=35^{\prime} h \\ & 01=110111=37 ' \mathrm{~h} \\ & 0 F=111011=3 B^{\prime} h \\ & 1 F=111101=3 D^{\prime} h \end{aligned}$
0x2D	CH4-CHAO VOD Control	7	Reserved	R/W	0x03	Set bit to 0.
		5:0	CH4 OAO VOD			$\begin{aligned} & \text { OAO VOD Control } \\ & \text { O3'h }=600 \mathrm{mV} \text { (Default) } \\ & 07 \mathrm{~h}=800 \mathrm{mV} \\ & \text { OF'h }=1000 \mathrm{mV} \\ & 1 \mathrm{~F}^{\prime} \mathrm{h}=1200 \mathrm{mV} \end{aligned}$
0x2E	CH4 - CHAO DE Control	7:0	CH4 OAO DEM	R/W	0x03	OAO DEM Control [7]: DEM TYPE (Compatibility $=0 /$ Enhanced $=1$) [6:0]: DEM Level Control Pin [DEM1 DEM0] = Register [TYPE] [Level Control] = Hex Value $\begin{aligned} & 00=00000001=01^{\prime} \mathrm{h}=0.0 \mathrm{~dB} \\ & 01=11101000=\mathrm{E} 8^{\prime} \mathrm{h}=-3.5 \mathrm{~dB} \\ & 11=10001000=88^{\prime} \mathrm{h}=-6.0 \mathrm{~dB} \\ & 0 \mathrm{~F}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & 1 \mathrm{~F}=10100000=\mathrm{A} 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{~F} 0=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & \mathrm{~F} 1=10100000=\mathrm{AO} \mathrm{C}=-12.0 \mathrm{~dB} \\ & \mathrm{FF}=11000000=\mathrm{C} 0^{\prime} \mathrm{h}=\text { Reserved } \end{aligned}$
0x2F	CH4-CHAO IDLE Threshold	7:4	Reserved	R/W	0x00	Set bits to 0 .
		3:0	IDLE threshold			$\begin{aligned} & \text { De-assert = [3:2], assert = [1:0] } \\ & 00=110 \mathrm{mV}, 70 \mathrm{mV} \text { (Default) } \\ & 01=150 \mathrm{mV}, 110 \mathrm{mV} \\ & 10=170 \mathrm{mV}, 130 \mathrm{mV} \\ & 11=190 \mathrm{mV}, 150 \mathrm{mV} \end{aligned}$

0×32	CH5-CHA1 IDLE RATE Select	7:6	Reserved	R/W	0x00	Set bits to 0.
		5	IDLE auto			0: Allow IDLE_sel control in Bit 4 1: Automatic IDLE detect
		4	IDLE select			0 : Output is ON (SD is disabled) 1: Output is muted (electrical idle)
		3:2	Reserved			Set bits to 0 .
		1	RATE auto			0: Allow RATE_sel control in Bit 0 1: Automatic RATE detect
		0	RATE select			0: 2.5 Gbps 1: 5.0 Gbps
0x33	CH5-CHA1 EQ Control	7:6	Reserved	R/W	0x20	Set bits to 0 .
		5:0	CH5 IA1 EQ			IA1 EQ Control - total of 24 levels (3 gain stages with 8 settings) [5]: Enable EQ [4:3]: Gain Stage Control [2:0]: Boost Level Control Pin [EQ0 EQ1] = Register [EN] [GST] [BST] = Hex Value $\begin{aligned} & \mathrm{FF}=100000=20^{\prime} \mathrm{h}=\text { Bypass (Default) } \\ & 11=101010=2 A^{\prime} \mathrm{h} \\ & 00=110000=30^{\prime} \mathrm{h} \\ & \mathrm{~F}=110010=32^{\prime} \mathrm{h} \\ & 10=111001=39^{\prime} \mathrm{h} \\ & \mathrm{~F} 1=110101=35^{\prime} \mathrm{h} \\ & 01=110111=37^{\prime} \mathrm{h} \\ & \mathrm{OF}=111011=3 B^{\prime} \mathrm{h} \\ & 1 \mathrm{~F}=111101=3 D^{\prime} \mathrm{h} \end{aligned}$
0x34	CH5-CHA1 VOD Control	7	Reserved	R/W	0x03	Set bit to 0 .
		5:0	CH5 OA1 VOD			OA1 VOD Control $\begin{aligned} & 03^{\prime} \mathrm{h}=600 \mathrm{mV} \text { (Default) } \\ & 07 \mathrm{~h}=800 \mathrm{mV} \\ & 0 \mathrm{~F} \mathrm{~h}=1000 \mathrm{mV} \\ & 1 \mathrm{~F} \mathrm{~h}=1200 \mathrm{mV} \end{aligned}$
0x35	CH5-CHA1 DE Control	7:0	CH5 OA1 DEM	R/W	0×03	OA1 DEM Control [7]: DEM TYPE (Compatibility = $0 /$ Enhanced = 1) [6:0]: DEM Level Control Pin [DEM1 DEM0] = Register [TYPE] [Level Control] = Hex Value $\begin{aligned} & 00=00000001=01^{\prime} \mathrm{h}=0.0 \mathrm{~dB} \\ & 01=11101000=E 8^{\prime} \mathrm{h}=-3.5 \mathrm{~dB} \\ & 11=10001000=88^{\prime} \mathrm{h}=-6.0 \mathrm{~dB} \\ & 0 \mathrm{~F}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & 1 \mathrm{~F}=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FO}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & \mathrm{~F} 1=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FF}=11000000=\mathrm{C} 0^{\prime} \mathrm{h}=\text { Reserved } \end{aligned}$
0x36	CH5-CHA1 IDLE Threshold	7:4	Reserved	R/W	0×00	Set bits to 0 .
		3:0	IDLE threshold			$\begin{aligned} & \text { De-assert }=[3: 2], \text { assert }=[1: 0] \\ & 00=110 \mathrm{mV}, 70 \mathrm{mV} \text { (Default }) \\ & 01=150 \mathrm{mV}, 110 \mathrm{mV} \\ & 10=170 \mathrm{mV}, 130 \mathrm{mV} \\ & 11=190 \mathrm{mV}, 150 \mathrm{mV} \end{aligned}$

0x39	CH6 - CHA2 IDLE RATE Select	7:6	Reserved	R/W	0x00	Set bits to 0 .
		5	IDLE auto			0: Allow IDLE_sel control in Bit 4 1: Automatic IDLE detect
		4	IDLE select			0 : Output is ON (SD is disabled) 1: Output is muted (electrical idle)
		3:2	Reserved			Set bits to 0 .
		1	RATE auto			0: Allow RATE_sel control in Bit 0 1: Automatic RATE detect
		0	RATE select			$\begin{aligned} & \hline 0: 2.5 \mathrm{Gbps} \\ & \text { 1: } 5.0 \mathrm{Gbps} \end{aligned}$
0x3A	CH6 - CHA2 EQ Control	7:6	Reserved	R/W	0x20	Set bits to 0 .
		5:0	CH6 IA2 EQ			IA2 EQ Control - total of 24 levels (3 gain stages with 8 settings) [5]: Enable EQ [4:3]: Gain Stage Control [2:0]: Boost Level Control Pin [EQ1 EQ0] = Register [EN] [GST] [BST] = Hex Value $\begin{aligned} & F F=100000=20^{\prime} \mathrm{h}=\text { Bypass (Default) } \\ & 11=101010=2 A^{\prime} \mathrm{h} \\ & 00=110000=30^{\prime} \mathrm{h} \\ & \mathrm{FO}=110010=32^{\prime} \mathrm{h} \\ & 10=111001=39^{\prime} \mathrm{h} \\ & \mathrm{~F} 1=110101=35^{\prime} \mathrm{h} \\ & 01=110111=37 ' \mathrm{~h} \\ & 0 \mathrm{~F}=111011=3 B^{\prime} \mathrm{h} \\ & 1 \mathrm{~F}=111101=3 D^{\prime} \mathrm{h} \end{aligned}$
0x3B	CH6 - CHA2 VOD Control	7	Reserved	R/W	0x03	Set bit to 0.
		5:0	CH6 OA2 VOD			$\begin{aligned} & \text { OA2 VOD Control } \\ & \text { O3'h }=600 \mathrm{mV} \text { (Default) } \\ & 07 \mathrm{~h}=800 \mathrm{mV} \\ & \text { OF'h }=1000 \mathrm{mV} \\ & 1 \mathrm{~F}^{\prime} \mathrm{h}=1200 \mathrm{mV} \end{aligned}$
0x3C	CH6 - CHA2 DE Control	7:0	CH6 OA2 DEM	R/W	0x03	OA2 DEM Control [7]: DEM TYPE (Compatibility $=0 /$ Enhanced $=1$) [6:0]: DEM Level Control Pin [DEM1 DEM0] = Register [TYPE] [Level Control] = Hex Value $\begin{aligned} & 00=00000001=01^{\prime} \mathrm{h}=0.0 \mathrm{~dB} \\ & 01=11101000=E 8^{\prime} \mathrm{h}=-3.5 \mathrm{~dB} \\ & 11=10001000=88^{\prime} \mathrm{h}=-6.0 \mathrm{~dB} \\ & 0 \mathrm{~F}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & 1 \mathrm{~F}=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FO}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & \mathrm{~F} 1=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FF}=11000000=\text { CO'h }=\text { Reserved } \end{aligned}$
0x3D	CH6 - CHA2 IDLE Threshold	7:4	Reserved	R/W	0x00	Set bits to 0 .
		3:0	IDLE threshold			$\begin{aligned} & \text { De-assert = [3:2], assert = [1:0] } \\ & 00=110 \mathrm{mV}, 70 \mathrm{mV} \text { (Default) } \\ & 01=150 \mathrm{mV}, 110 \mathrm{mV} \\ & 10=170 \mathrm{mV}, 130 \mathrm{mV} \\ & 11=190 \mathrm{mV}, 150 \mathrm{mV} \end{aligned}$

0×40	CH7-CHA3 IDLE RATE Select	7:6	Reserved	R/W	0x00	Set bits to 0.
		5	IDLE auto			0: Allow IDLE_sel control in Bit 4 1: Automatic IDLE detect
		4	IDLE select			0 : Output is ON (SD is disabled) 1: Output is muted (electrical idle)
		3:2	Reserved			Set bits to 0 .
		1	RATE auto			0: Allow RATE_sel control in Bit 0 1: Automatic RATE detect
		0	RATE select			0: 2.5 Gbps 1: 5.0 Gbps
0x41	CH7-CHA3 EQ Control	7:6	Reserved	R/W	0x20	Set bits to 0 .
		5:0	CH7 IA3 EQ			IA3 EQ Control - total of 24 levels (3 gain stages with 8 settings) [5]: Enable EQ [4:3]: Gain Stage Control [2:0]: Boost Level Control Pin [EQ0 EQ1] = Register [EN] [GST] [BST] = Hex Value $\begin{aligned} & \mathrm{FF}=100000=20^{\prime} \mathrm{h}=\text { Bypass (Default) } \\ & 11=101010=2 A^{\prime} \mathrm{h} \\ & 00=110000=30^{\prime} \mathrm{h} \\ & \mathrm{~F}=110010=32^{\prime} \mathrm{h} \\ & 10=111001=39^{\prime} \mathrm{h} \\ & \mathrm{~F} 1=110101=35^{\prime} \mathrm{h} \\ & 01=110111=37^{\prime} \mathrm{h} \\ & \mathrm{OF}=111011=3 B^{\prime} \mathrm{h} \\ & 1 \mathrm{~F}=111101=3 D^{\prime} \mathrm{h} \end{aligned}$
0x42	CH7-CHA3 VOD Control	7	Reserved	R/W	0x03	Set bit to 0 .
		5:0	CH7 OA3 VOD			OA3 VOD Control $\begin{aligned} & 03^{\prime} \mathrm{h}=600 \mathrm{mV} \text { (Default) } \\ & 07 \mathrm{~h}=800 \mathrm{mV} \\ & 0 \mathrm{~F} \mathrm{~h}=1000 \mathrm{mV} \\ & 1 \mathrm{~F} \mathrm{~h}=1200 \mathrm{mV} \end{aligned}$
0x43	CH7-CHA3 DE Control	7:0	CH7 OA3 DEM	R/W	0×03	OA3 DEM Control [7]: DEM TYPE (Compatibility = $0 /$ Enhanced = 1) [6:0]: DEM Level Control Pin [DEM1 DEM0] = Register [TYPE] [Level Control] = Hex Value $\begin{aligned} & 00=00000001=01^{\prime} \mathrm{h}=0.0 \mathrm{~dB} \\ & 01=11101000=E 8^{\prime} \mathrm{h}=-3.5 \mathrm{~dB} \\ & 11=10001000=88^{\prime} \mathrm{h}=-6.0 \mathrm{~dB} \\ & 0 \mathrm{~F}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & 1 \mathrm{~F}=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FO}=10010000=90^{\prime} \mathrm{h}=-9.0 \mathrm{~dB} \\ & \mathrm{~F} 1=10100000=A 0^{\prime} \mathrm{h}=-12.0 \mathrm{~dB} \\ & \mathrm{FF}=11000000=\mathrm{C} 0^{\prime} \mathrm{h}=\text { Reserved } \end{aligned}$
0x44	CH7-CHA3 IDLE Threshold	7:4	Reserved	R/W	0×00	Set bits to 0 .
		3:0	IDLE threshold			$\begin{aligned} & \text { De-assert }=[3: 2], \text { assert }=[1: 0] \\ & 00=110 \mathrm{mV}, 70 \mathrm{mV} \text { (Default }) \\ & 01=150 \mathrm{mV}, 110 \mathrm{mV} \\ & 10=170 \mathrm{mV}, 130 \mathrm{mV} \\ & 11=190 \mathrm{mV}, 150 \mathrm{mV} \end{aligned}$

0×47	Global VOD Adjust	7:2	Reserved	R/W	0x02	Set bits to 0 .
		1:0	VOD Adjust			00 = -25.0\%
						01--12.5\%
						$10=+0.0 \%$ (Default)
						$11=+12.5 \%$

Applications Information

GENERAL RECOMMENDATIONS

The DS50PCI402 is a high performance circuit capable of delivering excellent performance. Careful attention must be paid to the details associated with high-speed design as well as providing a clean power supply. Refer to the information below and the latest version of the LVDS Owner's Manual for more detailed information on high speed design tips to address signal integrity design issues.
impedance of $85-100 \Omega$. It is preferable to route differential lines exclusively on one layer of the board, particularly for the input traces. The use of vias should be avoided if possible. If vias must be used, they should be used sparingly and must be placed symmetrically for each side of a given differential pair. Whenever differential vias are used the layout must also provide for a low inductance path for the return currents as well. Route the differential signals away from other signals and noise sources on the printed circuit board. See AN-1187 for additional information on LLP packages.

PCB LAYOUT CONSIDERATIONS FOR DIFFERENTIAL PAIRS

The CML inputs and LPDS outputs have been optimized to work with interconnects using a controlled differential

FIGURE 8. Typical Routing Options

The graphic shown above depicts different transmission line topologies which can be used in various combinations to achieve the optimal system performance. Impedance discontinuities at the differential via can be minimized or eliminated by increasing the swell around each hole and providing for a low inductance return current path. When the via structure is associated with thick backplane PCB, further optimization such as back drilling is often used to reduce the deterimential high frequency effects of stubs on the signal path.

POWER SUPPLY BYPASSING

Two approaches are recommended to ensure that the DS50PCI402 is provided with an adequate power supply. First, the supply (VDD) and ground (GND) pins should be
connected to power planes routed on adjacent layers of the printed circuit board. The layer thickness of the dielectric should be minimized so that the V_{DD} and GND planes create a low inductance supply with distributed capacitance. Second, careful attention to supply bypassing through the proper use of bypass capacitors is required. A $0.01 \mu \mathrm{~F}$ bypass capacitor should be connected to each V_{DD} pin such that the capacitor is placed as close as possible to the DS50PCI402. Smaller body size capacitors can help facilitate proper component placement. Additionally, three capacitors with capacitance in the range of $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ should be incorporated in the power supply bypassing design as well. These capacitors can be either tantalum or an ultra-low ESR ceramic.

Typical Performance Eye Diagrams and Curves

DS50PCI402 Return Loss

FIGURE 9. Receiver Return Loss Mask for 5.0 Gbps

FIGURE 10. Transmitter Return Loss Mask for 5.0 Gbps

Physical Dimensions inches (millimeters) unless otherwise noted

Notes

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications \& Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic ${ }^{\text {TM }}$	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise $®$ Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2010 National Semiconductor Corporation
For the most current product information visit us at www.national.com

National Semiconductor	National Semiconductor Europe	National Semiconductor Asia	National Semiconductor Japan
Americas Technical	Technical Support Center	Pacific Technical Support Center	Technical Support Center
Support Center	Email: europe.support@nsc.com	Email: ap.support@nsc.com	
Email: support@nsc.com			
Tel: $1-800-272-9959$			

[^0]
[^0]: www.national.com

